Skip to main content
RNA logoLink to RNA
. 2001 Aug;7(8):1173–1179. doi: 10.1017/s1355838201010366

Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA.

A La Teana 1, C O Gualerzi 1, A E Dahlberg 1
PMCID: PMC1370164  PMID: 11497435

Abstract

During initiation of protein synthesis in bacteria, translation initiation factor IF2 is responsible for the recognition of the initiator tRNA (fMet-tRNA). To perform this function, IF2 binds to the ribosome interacting with both 30S and 50S ribosomal subunits. Here we report the topographical localization of translation initiation factor IF2 on the 70S ribosome determined by base-specific chemical probing. Our results indicate that IF2 specifically protects from chemical modification two sites in domain V of 23S rRNA, namely A2476 and A2478, and residues around position 2660 in domain VI, the so-called sarcin-ricin loop. These footprints are generated by IF2 regardless of the presence of fMet-tRNA, GTP, mRNA, and IF1. IF2 causes no specific protection of 16S rRNA. We observe a decreased reactivity of residues A1418 and A1483, which is an indication that the initiation factor has a tightening effect on the association of ribosomal subunits. This result, confirmed by sucrose density gradient analysis, seems to be a universally conserved property of IF2.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  2. Boileau G., Butler P., Hershey J. W., Traut R. R. Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. Biochemistry. 1983 Jun 21;22(13):3162–3170. doi: 10.1021/bi00282a020. [DOI] [PubMed] [Google Scholar]
  3. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  4. Brock S., Szkaradkiewicz K., Sprinzl M. Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol Microbiol. 1998 Jul;29(2):409–417. doi: 10.1046/j.1365-2958.1998.00893.x. [DOI] [PubMed] [Google Scholar]
  5. Brombach M., Gualerzi C. O., Nakamura Y., Pon C. L. Molecular cloning and sequence of the Bacillus stearothermophilus translational initiation factor IF2 gene. Mol Gen Genet. 1986 Oct;205(1):97–102. doi: 10.1007/BF02428037. [DOI] [PubMed] [Google Scholar]
  6. Dahlquist K. D., Puglisi J. D. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J Mol Biol. 2000 May 26;299(1):1–15. doi: 10.1006/jmbi.2000.3672. [DOI] [PubMed] [Google Scholar]
  7. Grunberg-Manago M., Dessen P., Pantaloni D., Godefroy-Colburn T., Wolfe A. D., Dondon J. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J Mol Biol. 1975 May 25;94(3):461–478. doi: 10.1016/0022-2836(75)90215-6. [DOI] [PubMed] [Google Scholar]
  8. Gualerzi C. O., Pon C. L. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990 Jun 26;29(25):5881–5889. doi: 10.1021/bi00477a001. [DOI] [PubMed] [Google Scholar]
  9. Gualerzi C. O., Severini M., Spurio R., La Teana A., Pon C. L. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J Biol Chem. 1991 Sep 5;266(25):16356–16362. [PubMed] [Google Scholar]
  10. Guenneugues M., Caserta E., Brandi L., Spurio R., Meunier S., Pon C. L., Boelens R., Gualerzi C. O. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J. 2000 Oct 2;19(19):5233–5240. doi: 10.1093/emboj/19.19.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. La Teana A., Pon C. L., Gualerzi C. O. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J Mol Biol. 1996 Mar 8;256(4):667–675. doi: 10.1006/jmbi.1996.0116. [DOI] [PubMed] [Google Scholar]
  12. Lee J. H., Choi S. K., Roll-Mecak A., Burley S. K., Dever T. E. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4342–4347. doi: 10.1073/pnas.96.8.4342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luchin S., Putzer H., Hershey J. W., Cenatiempo Y., Grunberg-Manago M., Laalami S. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem. 1999 Mar 5;274(10):6074–6079. doi: 10.1074/jbc.274.10.6074. [DOI] [PubMed] [Google Scholar]
  14. Merryman C., Moazed D., McWhirter J., Noller H. F. Nucleotides in 16S rRNA protected by the association of 30S and 50S ribosomal subunits. J Mol Biol. 1999 Jan 8;285(1):97–105. doi: 10.1006/jmbi.1998.2242. [DOI] [PubMed] [Google Scholar]
  15. Meunier S., Spurio R., Czisch M., Wechselberger R., Guenneugues M., Gualerzi C. O., Boelens R. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J. 2000 Apr 17;19(8):1918–1926. doi: 10.1093/emboj/19.8.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moazed D., Noller H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J Mol Biol. 1990 Jan 5;211(1):135–145. doi: 10.1016/0022-2836(90)90016-F. [DOI] [PubMed] [Google Scholar]
  17. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  18. Moazed D., Samaha R. R., Gualerzi C., Noller H. F. Specific protection of 16 S rRNA by translational initiation factors. J Mol Biol. 1995 Apr 28;248(2):207–210. doi: 10.1016/s0022-2836(95)80042-5. [DOI] [PubMed] [Google Scholar]
  19. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  20. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
  21. Ohsawa H., Gualerzi C. Chemical modification in situ of Escherichia coli 30 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the aminoacyl-tRNA and mRNA binding sites. J Biol Chem. 1983 Jan 10;258(1):150–156. [PubMed] [Google Scholar]
  22. Pestova T. V., Lomakin I. B., Lee J. H., Choi S. K., Dever T. E., Hellen C. U. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature. 2000 Jan 20;403(6767):332–335. doi: 10.1038/35002118. [DOI] [PubMed] [Google Scholar]
  23. Richman N., Bodley J. W. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Proc Natl Acad Sci U S A. 1972 Mar;69(3):686–689. doi: 10.1073/pnas.69.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roll-Mecak A., Cao C., Dever T. E., Burley S. K. X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell. 2000 Nov 22;103(5):781–792. doi: 10.1016/s0092-8674(00)00181-1. [DOI] [PubMed] [Google Scholar]
  25. Sergiev P., Dokudovskaya S., Romanova E., Topin A., Bogdanov A., Brimacombe R., Dontsova O. The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA. Nucleic Acids Res. 1998 Jun 1;26(11):2519–2525. doi: 10.1093/nar/26.11.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spurio R., Brandi L., Caserta E., Pon C. L., Gualerzi C. O., Misselwitz R., Krafft C., Welfle K., Welfle H. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem. 2000 Jan 28;275(4):2447–2454. doi: 10.1074/jbc.275.4.2447. [DOI] [PubMed] [Google Scholar]
  27. Tomsic J., Vitali L. A., Daviter T., Savelsbergh A., Spurio R., Striebeck P., Wintermeyer W., Rodnina M. V., Gualerzi C. O. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J. 2000 May 2;19(9):2127–2136. doi: 10.1093/emboj/19.9.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wakao H., Romby P., Laalami S., Ebel J. P., Ehresmann C., Ehresmann B. Binding of initiation factor 2 and initiator tRNA to the Escherichia coli 30S ribosomal subunit induces allosteric transitions in 16S rRNA. Biochemistry. 1990 Sep 4;29(35):8144–8151. doi: 10.1021/bi00487a023. [DOI] [PubMed] [Google Scholar]
  29. Wilson K. S., Noller H. F. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell. 1998 Jan 9;92(1):131–139. doi: 10.1016/s0092-8674(00)80905-8. [DOI] [PubMed] [Google Scholar]
  30. van der Hofstad G. A., Buitenhek A., van den Elsen P. J., Voorma H. O., Bosch L. Binding of labeled initiation factor IF-1 to ribosomal particles and the relationship to the mode of IF-1 action in ribosome dissociation. Eur J Biochem. 1978 Aug 15;89(1):221–228. doi: 10.1111/j.1432-1033.1978.tb20916.x. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES