Skip to main content
RNA logoLink to RNA
. 2001 Sep;7(9):1310–1316. doi: 10.1017/s1355838201010573

Evaluation and refinement of tmRNA structure using gene sequences from natural microbial communities.

S T Kelley 1, J K Harris 1, N R Pace 1
PMCID: PMC1370174  PMID: 11565752

Abstract

DNA harvested directly from complex natural microbial communities by PCR has been successfully used to predict RNase P RNA structure, and can potentially provide an abundant source of information for structural predictions of other RNAs. In this study, we utilized genetic variation in natural communities to test and refine the secondary and tertiary structural model for the bacterial tmRNA. The variability of proposed tmRNA secondary structures in different organisms and the lack of any predicted tertiary structure suggested that further refinement of the tmRNA could be useful. To increase the phylogenetic representation of tmRNA sequences, and thereby provide additional data for statistical comparative analysis, we amplified, sequenced, and compared tmRNA sequences from natural microbial communities. Using primers designed from gamma proteobacterial sequences, we determined 44 new tmRNA sequences from a variety of environmental DNA samples. Covariation analyses of these sequences, along with sequences from cultured organisms, confirmed most of the proposed tmRNA model but also provided evidence for a new tertiary interaction. This approach of gathering sequence information from natural microbial communities seems generally applicable in RNA structural analysis.

Full Text

The Full Text of this article is available as a PDF (318.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar A. The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods Mol Biol. 2000;132:221–241. doi: 10.1385/1-59259-192-2:221. [DOI] [PubMed] [Google Scholar]
  2. Akmaev V. R., Kelley S. T., Stormo G. D. A phylogenetic approach to RNA structure prediction. Proc Int Conf Intell Syst Mol Biol. 1999:10–17. [PubMed] [Google Scholar]
  3. Akmaev V. R., Kelley S. T., Stormo G. D. Phylogenetically enhanced statistical tools for RNA structure prediction. Bioinformatics. 2000 Jun;16(6):501–512. doi: 10.1093/bioinformatics/16.6.501. [DOI] [PubMed] [Google Scholar]
  4. Brown J. W., Nolan J. M., Haas E. S., Rubio M. A., Major F., Pace N. R. Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3001–3006. doi: 10.1073/pnas.93.7.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgin A. B., Parodos K., Lane D. J., Pace N. R. The excision of intervening sequences from Salmonella 23S ribosomal RNA. Cell. 1990 Feb 9;60(3):405–414. doi: 10.1016/0092-8674(90)90592-3. [DOI] [PubMed] [Google Scholar]
  6. Dojka M. A., Harris J. K., Pace N. R. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol. 2000 Apr;66(4):1617–1621. doi: 10.1128/aem.66.4.1617-1621.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dojka M. A., Hugenholtz P., Haack S. K., Pace N. R. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol. 1998 Oct;64(10):3869–3877. doi: 10.1128/aem.64.10.3869-3877.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Felden B., Massire C., Westhof E., Atkins J. F., Gesteland R. F. Phylogenetic analysis of tmRNA genes within a bacterial subgroup reveals a specific structural signature. Nucleic Acids Res. 2001 Apr 1;29(7):1602–1607. doi: 10.1093/nar/29.7.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox G. E., Woese C. R. The architecture of 5S rRNA and its relation to function. J Mol Evol. 1975 Oct 3;6(1):61–76. doi: 10.1007/BF01732674. [DOI] [PubMed] [Google Scholar]
  10. Frank D. N., Pace N. R. Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem. 1998;67:153–180. doi: 10.1146/annurev.biochem.67.1.153. [DOI] [PubMed] [Google Scholar]
  11. Gutell R. R., Power A., Hertz G. Z., Putz E. J., Stormo G. D. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992 Nov 11;20(21):5785–5795. doi: 10.1093/nar/20.21.5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutell R. R., Schnare M. N., Gray M. W. A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2319–2330. doi: 10.1093/nar/18.suppl.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karzai A. W., Roche E. D., Sauer R. T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol. 2000 Jun;7(6):449–455. doi: 10.1038/75843. [DOI] [PubMed] [Google Scholar]
  14. Karzai A. W., Susskind M. M., Sauer R. T. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 1999 Jul 1;18(13):3793–3799. doi: 10.1093/emboj/18.13.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keiler K. C., Shapiro L., Williams K. P. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7778–7783. doi: 10.1073/pnas.97.14.7778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kelley S. T., Akmaev V. R., Stormo G. D. Improved statistical methods reveal direct interactions between 16S and 23S rRNA. Nucleic Acids Res. 2000 Dec 15;28(24):4938–4943. doi: 10.1093/nar/28.24.4938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knudsen B., Wower J., Zwieb C., Gorodkin J. tmRDB (tmRNA database). Nucleic Acids Res. 2001 Jan 1;29(1):171–172. doi: 10.1093/nar/29.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nameki N., Chattopadhyay P., Himeno H., Muto A., Kawai G. An NMR and mutational analysis of an RNA pseudoknot of Escherichia coli tmRNA involved in trans-translation. Nucleic Acids Res. 1999 Sep 15;27(18):3667–3675. doi: 10.1093/nar/27.18.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nameki N., Tadaki T., Himeno H., Muto A. Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBS Lett. 2000 Mar 31;470(3):345–349. doi: 10.1016/s0014-5793(00)01349-1. [DOI] [PubMed] [Google Scholar]
  20. Wassarman K. M., Zhang A., Storz G. Small RNAs in Escherichia coli. Trends Microbiol. 1999 Jan;7(1):37–45. doi: 10.1016/s0966-842x(98)01379-1. [DOI] [PubMed] [Google Scholar]
  21. Williams K. P., Bartel D. P. Phylogenetic analysis of tmRNA secondary structure. RNA. 1996 Dec;2(12):1306–1310. [PMC free article] [PubMed] [Google Scholar]
  22. Williams K. P., Bartel D. P. The tmRNA Website. Nucleic Acids Res. 1998 Jan 1;26(1):163–165. doi: 10.1093/nar/26.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams K. P., Martindale K. A., Bartel D. P. Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J. 1999 Oct 1;18(19):5423–5433. doi: 10.1093/emboj/18.19.5423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Woese C. R., Magrum L. J., Gupta R., Siegel R. B., Stahl D. A., Kop J., Crawford N., Brosius J., Gutell R., Hogan J. J. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 1980 May 24;8(10):2275–2293. doi: 10.1093/nar/8.10.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wower I. K., Zwieb C. W., Guven S. A., Wower J. Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J. 2000 Dec 1;19(23):6612–6621. doi: 10.1093/emboj/19.23.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zwieb C., Samuelsson T. SRPDB (signal recognition particle database). Nucleic Acids Res. 2000 Jan 1;28(1):171–172. doi: 10.1093/nar/28.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zwieb C., Wower I., Wower J. Comparative sequence analysis of tmRNA. Nucleic Acids Res. 1999 May 15;27(10):2063–2071. doi: 10.1093/nar/27.10.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES