Skip to main content
RNA logoLink to RNA
. 2001 Oct;7(10):1432–1441.

tRNA recognition by tRNA-guanine transglycosylase from Escherichia coli: the role of U33 in U-G-U sequence recognition.

S T Nonekowski 1, G A Garcia 1
PMCID: PMC1370187  PMID: 11680848

Abstract

In eubacteria, the biosynthesis of queuine, a modified base found in the wobble position (#34) of tRNAs coding for Tyr, His, Asp, and Asn, occurs via a multistep pathway. One of the key enzymes in this pathway, tRNA-guanine transglycosylase (TGT), exchanges the genetically encoded guanine at position 34 with a queuine precursor, preQ1. Previous studies have identified a minimal positive RNA recognition motif for Escherichia coli TGT consisting of a stable minihelix that contains a U-G-U sequence starting at the second position of its seven base anticodon loop. Recently, we reported that TGT was capable of recognizing the U-G-U sequence outside of this limited structural context. To further characterize the ability of TGT to recognize the U-G-U sequence in alternate contexts, we constructed mutants of the previously characterized E. coli tRNA(Tyr) minihelix. The U-G-U sequence was shifted to various positions within the anticodon loop of these mutants. Characterization of these analogs demonstrates that in addition to the normal U33G34U35 position, TGT can also recognize the U34G35U36 analog (UGU(+1)). The other analogs were not active. This indicates that the recognition of the U-G-U sequence is not strictly dependent upon its position relative to the stem. In E. coli, the full-length tRNA with a U34G35U36 anticodon sequence is one of the isoacceptors that codes for threonine. We found that TGT is able to recognize tRNA(Thr(UGU)) but only in the absence of a uridine at position 33. U33, an invariant base present in all tRNAs, has been shown to strongly influence the conformation of the anticodon loop of certain tRNAs. We find that mutation of this base confers on TGT the ability to recognize U34G35U36, and suggests that loop conformation affects recognition. The fact that the other analogs were not active indicates that although TGT is capable of recognizing the U-G-U sequence in additional contexts, this recognition is not indiscriminate.

Full Text

The Full Text of this article is available as a PDF (488.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffinger P., Westhof E. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol. 1999 Sep 24;292(3):467–483. doi: 10.1006/jmbi.1999.3080. [DOI] [PubMed] [Google Scholar]
  2. Carbon P., Haumont E., Fournier M., de Henau S., Grosjean H. Site-directed in vitro replacement of nucleosides in the anticodon loop of tRNA: application to the study of structural requirements for queuine insertase activity. EMBO J. 1983;2(7):1093–1097. doi: 10.1002/j.1460-2075.1983.tb01551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cavarelli J., Rees B., Ruff M., Thierry J. C., Moras D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature. 1993 Mar 11;362(6416):181–184. doi: 10.1038/362181a0. [DOI] [PubMed] [Google Scholar]
  4. Chong S., Garcia G. A. A versatile and general prokaryotic expression vector, pLACT7. Biotechniques. 1994 Oct;17(4):686, 688, 690-1. [PubMed] [Google Scholar]
  5. Clore G. M., Gronenborn A. M., Piper E. A., McLaughlin L. W., Graeser E., van Boom J. H. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Biochem J. 1984 Aug 1;221(3):737–751. doi: 10.1042/bj2210737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curnow A. W., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli. Minimal tRNA structure and sequence requirements for recognition. J Biol Chem. 1995 Jul 21;270(29):17264–17267. doi: 10.1074/jbc.270.29.17264. [DOI] [PubMed] [Google Scholar]
  7. Curnow A. W., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of dimeric, unmodified tRNA(Tyr). Biochimie. 1994;76(12):1183–1191. doi: 10.1016/0300-9084(94)90048-5. [DOI] [PubMed] [Google Scholar]
  8. Curnow A. W., Kung F. L., Koch K. A., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry. 1993 May 18;32(19):5239–5246. doi: 10.1021/bi00070a036. [DOI] [PubMed] [Google Scholar]
  9. Eiler S., Dock-Bregeon A., Moulinier L., Thierry J. C., Moras D. Synthesis of aspartyl-tRNA(Asp) in Escherichia coli--a snapshot of the second step. EMBO J. 1999 Nov 15;18(22):6532–6541. doi: 10.1093/emboj/18.22.6532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fountain M. A., Serra M. J., Krugh T. R., Turner D. H. Structural features of a six-nucleotide RNA hairpin loop found in ribosomal RNA. Biochemistry. 1996 May 28;35(21):6539–6548. doi: 10.1021/bi952697k. [DOI] [PubMed] [Google Scholar]
  11. Frugier M., Helm M., Felden B., Giegé R., Florentz C. Sequences outside recognition sets are not neutral for tRNA aminoacylation. Evidence for nonpermissive combinations of nucleotides in the acceptor stem of yeast tRNAPhe. J Biol Chem. 1998 May 8;273(19):11605–11610. doi: 10.1074/jbc.273.19.11605. [DOI] [PubMed] [Google Scholar]
  12. Gabriel K., Schneider J., McClain W. H. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase. Science. 1996 Jan 12;271(5246):195–197. doi: 10.1126/science.271.5246.195. [DOI] [PubMed] [Google Scholar]
  13. Garcia G. A., Koch K. A., Chong S. tRNA-guanine transglycosylase from Escherichia coli. Overexpression, purification and quaternary structure. J Mol Biol. 1993 May 20;231(2):489–497. doi: 10.1006/jmbi.1993.1296. [DOI] [PubMed] [Google Scholar]
  14. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hasegawa T., Himeno H., Ishikura H., Shimizu M. Discriminator base of tRNA(Asp) is involved in amino acid acceptor activity. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1534–1538. doi: 10.1016/0006-291x(89)91154-6. [DOI] [PubMed] [Google Scholar]
  16. Hasegawa T., Ishikura H. Nucleotide sequence of threonine tRNA from Bacillus subtilis. Nucleic Acids Res. 1978 Feb;5(2):537–548. doi: 10.1093/nar/5.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horowitz J., Chu W. C., Derrick W. B., Liu J. C., Liu M., Yue D. Synthetase recognition determinants of E. coli valine transfer RNA. Biochemistry. 1999 Jun 15;38(24):7737–7746. doi: 10.1021/bi990490b. [DOI] [PubMed] [Google Scholar]
  18. Huang S., Wang Y. X., Draper D. E. Structure of a hexanucleotide RNA hairpin loop conserved in ribosomal RNAs. J Mol Biol. 1996 May 3;258(2):308–321. doi: 10.1006/jmbi.1996.0252. [DOI] [PubMed] [Google Scholar]
  19. Kirtland G. M., Morris T. D., Moore P. H., O'Brian J. J., Edmonds C. G., McCloskey J. A., Katze J. R. Novel salvage of queuine from queuosine and absence of queuine synthesis in Chlorella pyrenoidosa and Chlamydomonas reinhardtii. J Bacteriol. 1988 Dec;170(12):5633–5641. doi: 10.1128/jb.170.12.5633-5641.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kung F. L., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of full-length 'queuine-cognate' tRNAs. FEBS Lett. 1998 Jul 24;431(3):427–432. doi: 10.1016/s0014-5793(98)00801-1. [DOI] [PubMed] [Google Scholar]
  21. Kung F. L., Nonekowski S., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe). RNA. 2000 Feb;6(2):233–244. doi: 10.1017/s135583820099191x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Limbach P. A., Crain P. F., McCloskey J. A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994 Jun 25;22(12):2183–2196. doi: 10.1093/nar/22.12.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liu M., Chu W. C., Liu J. C., Horowitz J. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase. Nucleic Acids Res. 1997 Dec 15;25(24):4883–4890. doi: 10.1093/nar/25.24.4883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin F., Eriani G., Eiler S., Moras D., Dirheimer G., Gangloff J. Overproduction and purification of native and queuine-lacking Escherichia coli tRNA(Asp). Role of the wobble base in tRNA(Asp) acylation. J Mol Biol. 1993 Dec 20;234(4):965–974. doi: 10.1006/jmbi.1993.1651. [DOI] [PubMed] [Google Scholar]
  25. McClain W. H., Gabriel K., Schneider J. Specific function of a G.U wobble pair from an adjacent helical site in tRNA(Ala) during recognition by alanyl-tRNA synthetase. RNA. 1996 Feb;2(2):105–109. [PMC free article] [PubMed] [Google Scholar]
  26. Meinnel T., Mechulam Y., Lazennec C., Blanquet S., Fayat G. Critical role of the acceptor stem of tRNAs(Met) in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. J Mol Biol. 1993 Jan 5;229(1):26–36. doi: 10.1006/jmbi.1993.1005. [DOI] [PubMed] [Google Scholar]
  27. Moore P. B. Structural motifs in RNA. Annu Rev Biochem. 1999;68:287–300. doi: 10.1146/annurev.biochem.68.1.287. [DOI] [PubMed] [Google Scholar]
  28. Musier-Forsyth K., Schimmel P. Functional contacts of a transfer RNA synthetase with 2'-hydroxyl groups in the RNA minor groove. Nature. 1992 Jun 11;357(6378):513–515. doi: 10.1038/357513a0. [DOI] [PubMed] [Google Scholar]
  29. Musier-Forsyth K., Usman N., Scaringe S., Doudna J., Green R., Schimmel P. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science. 1991 Aug 16;253(5021):784–786. doi: 10.1126/science.1876835. [DOI] [PubMed] [Google Scholar]
  30. Nakanishi S., Ueda T., Hori H., Yamazaki N., Okada N., Watanabe K. A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase. J Biol Chem. 1994 Dec 23;269(51):32221–32225. [PubMed] [Google Scholar]
  31. Nishikura K., De Robertis E. M. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol. 1981 Jan 15;145(2):405–420. doi: 10.1016/0022-2836(81)90212-6. [DOI] [PubMed] [Google Scholar]
  32. Noguchi S., Nishimura Y., Hirota Y., Nishimura S. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J Biol Chem. 1982 Jun 10;257(11):6544–6550. [PubMed] [Google Scholar]
  33. Okada N., Harada F., Nishimura S. Specific replacement of Q base in the anticodon of tRNA by guanine catalyzed by a cell-free extract of rabbit reticulocytes. Nucleic Acids Res. 1976 Oct;3(10):2593–2603. doi: 10.1093/nar/3.10.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Okada N., Nishimura S. Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase, from Escherichia coli. J Biol Chem. 1979 Apr 25;254(8):3061–3066. [PubMed] [Google Scholar]
  35. Okada N., Noguchi S., Kasai H., Shindo-Okada N., Ohgi T., Goto T., Nishimura S. Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction. J Biol Chem. 1979 Apr 25;254(8):3067–3073. [PubMed] [Google Scholar]
  36. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  37. Pütz J., Puglisi J. D., Florentz C., Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science. 1991 Jun 21;252(5013):1696–1699. doi: 10.1126/science.2047878. [DOI] [PubMed] [Google Scholar]
  38. Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
  39. Reuter K., Chong S., Ullrich F., Kersten H., Garcia G. A. Serine 90 is required for enzymic activity by tRNA-guanine transglycosylase from Escherichia coli. Biochemistry. 1994 Jun 14;33(23):7041–7046. doi: 10.1021/bi00189a004. [DOI] [PubMed] [Google Scholar]
  40. Reuter K., Slany R., Ullrich F., Kersten H. Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. J Bacteriol. 1991 Apr;173(7):2256–2264. doi: 10.1128/jb.173.7.2256-2264.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Romier C., Reuter K., Suck D., Ficner R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 1996 Jun 3;15(11):2850–2857. [PMC free article] [PubMed] [Google Scholar]
  42. Romier C., Reuter K., Suck D., Ficner R. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile. Biochemistry. 1996 Dec 10;35(49):15734–15739. doi: 10.1021/bi962003n. [DOI] [PubMed] [Google Scholar]
  43. Ruff M., Krishnaswamy S., Boeglin M., Poterszman A., Mitschler A., Podjarny A., Rees B., Thierry J. C., Moras D. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991 Jun 21;252(5013):1682–1689. doi: 10.1126/science.2047877. [DOI] [PubMed] [Google Scholar]
  44. Schulman L. H. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol. 1991;41:23–87. [PubMed] [Google Scholar]
  45. Schweisguth D. C., Moore P. B. On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. J Mol Biol. 1997 Apr 4;267(3):505–519. doi: 10.1006/jmbi.1996.0903. [DOI] [PubMed] [Google Scholar]
  46. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  47. Shindo-Okada N., Okada N., Ohgi T., Goto T., Nishimura S. Transfer ribonucleic acid guanine transglycosylase isolated from rat liver. Biochemistry. 1980 Jan 22;19(2):395–400. doi: 10.1021/bi00543a023. [DOI] [PubMed] [Google Scholar]
  48. Smith D., Yarus M. tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4397–4401. doi: 10.1073/pnas.86.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tsang T. H., Buck M., Ames B. N. Sequence specificity of tRNA-modifying enzymes. An analysis of 258 tRNA sequences. Biochim Biophys Acta. 1983 Nov 17;741(2):180–196. doi: 10.1016/0167-4781(83)90058-1. [DOI] [PubMed] [Google Scholar]
  51. Uemura H., Imai M., Ohtsuka E., Ikehara M., Söll D. E. coli initiator tRNA analogs with different nucleotides in the discriminator base position. Nucleic Acids Res. 1982 Oct 25;10(20):6531–6539. doi: 10.1093/nar/10.20.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Walden T., Reyniers J. P., Hiatt V., Farkas W. R. Yeast cells cannot incorporate queuine into their tRNA. Proc Soc Exp Biol Med. 1982 Jul;170(3):328–332. doi: 10.3181/00379727-170-41438. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES