Abstract
Tertiary structure in globular RNA folds can create local environments that lead to pKa perturbation of specific nucleotide functional groups. To assess the prevalence of functionally relevant adenosine-specific pKa perturbation in RNA structure, we have altered the nucleotide analog interference mapping (NAIM) approach to include a series of a phosphorothioate-tagged adenosine analogs with shifted N1 pKa values. We have used these analogs to analyze the hairpin ribozyme, a small self-cleaving/ligating RNA catalyst that is proposed to employ a general acid-base reaction mechanism. A single adenosine (A10) within the ribozyme active site displayed an interference pattern consistent with a functionally significant base ionization. The exocyclic amino group of a second adenosine (A38) contributes substantially to hairpin catalysis, but ionization of the nucleotide does not appear to be important for activity. Within the hairpin ribozyme crystal structure, A10 and A38 line opposite edges of a solvent-excluded cavity adjacent to the 5'-OH nucleophile. The results are inconsistent with the model of ribozyme chemistry in which A38 acts as a general acid-base catalyst, and suggest that the hairpin ribozyme uses an alternative mechanism to achieve catalytic rate enhancement that utilizes functional groups within a solvent-excluded cleft in the ribozyme active site.
Full Text
The Full Text of this article is available as a PDF (876.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berzal-Herranz A., Joseph S., Chowrira B. M., Butcher S. E., Burke J. M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 1993 Jun;12(6):2567–2573. doi: 10.1002/j.1460-2075.1993.tb05912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai Z., Tinoco I., Jr Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. Biochemistry. 1996 May 14;35(19):6026–6036. doi: 10.1021/bi952985g. [DOI] [PubMed] [Google Scholar]
- Chowrira B. M., Berzal-Herranz A., Burke J. M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature. 1991 Nov 28;354(6351):320–322. doi: 10.1038/354320a0. [DOI] [PubMed] [Google Scholar]
- Chowrira B. M., Berzal-Herranz A., Keller C. F., Burke J. M. Four ribose 2'-hydroxyl groups essential for catalytic function of the hairpin ribozyme. J Biol Chem. 1993 Sep 15;268(26):19458–19462. [PubMed] [Google Scholar]
- Earnshaw D. J., Gait M. J. Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions. Nucleic Acids Res. 1998 Dec 15;26(24):5551–5561. doi: 10.1093/nar/26.24.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earnshaw D. J., Masquida B., Müller S., Sigurdsson S. T., Eckstein F., Westhof E., Gait M. J. Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. J Mol Biol. 1997 Nov 28;274(2):197–212. doi: 10.1006/jmbi.1997.1405. [DOI] [PubMed] [Google Scholar]
- Feldstein P. A., Buzayan J. M., Bruening G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. 1989 Oct 15;82(1):53–61. doi: 10.1016/0378-1119(89)90029-2. [DOI] [PubMed] [Google Scholar]
- Ferré-D'Amaré A. R., Doudna J. A. Use of cis- and trans-ribozymes to remove 5' and 3' heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 1996 Mar 1;24(5):977–978. doi: 10.1093/nar/24.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
- Grasby J. A., Mersmann K., Singh M., Gait M. J. Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA. Biochemistry. 1995 Mar 28;34(12):4068–4076. doi: 10.1021/bi00012a025. [DOI] [PubMed] [Google Scholar]
- Hampel A., Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry. 1989 Jun 13;28(12):4929–4933. doi: 10.1021/bi00438a002. [DOI] [PubMed] [Google Scholar]
- Kierdaszuk B., Modrak-Wójcik A., Wierzchowski J., Shugar D. Formycin A and its N-methyl analogues, specific inhibitors of E. coli purine nucleoside phosphorylase (PNP): induced tautomeric shifts on binding to enzyme, and enzyme-->ligand fluorescence resonance energy transfer. Biochim Biophys Acta. 2000 Jan 3;1476(1):109–128. doi: 10.1016/s0167-4838(99)00225-3. [DOI] [PubMed] [Google Scholar]
- Klostermeier D., Millar D. P. Helical junctions as determinants for RNA folding: origin of tertiary structure stability of the hairpin ribozyme. Biochemistry. 2000 Oct 24;39(42):12970–12978. doi: 10.1021/bi0014103. [DOI] [PubMed] [Google Scholar]
- Murray J. B., Seyhan A. A., Walter N. G., Burke J. M., Scott W. G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol. 1998 Oct;5(10):587–595. doi: 10.1016/s1074-5521(98)90116-8. [DOI] [PubMed] [Google Scholar]
- Nesbitt S., Hegg L. A., Fedor M. J. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol. 1997 Aug;4(8):619–630. doi: 10.1016/s1074-5521(97)90247-7. [DOI] [PubMed] [Google Scholar]
- Pinard R., Lambert D., Walter N. G., Heckman J. E., Major F., Burke J. M. Structural basis for the guanosine requirement of the hairpin ribozyme. Biochemistry. 1999 Dec 7;38(49):16035–16039. doi: 10.1021/bi992024s. [DOI] [PubMed] [Google Scholar]
- Richards F. M., Wyckoff H. W., Carlson W. D., Allewell N. M., Lee B., Mitsui Y. Protein structure, ribonuclease-S and nucleotide interactions. Cold Spring Harb Symp Quant Biol. 1972;36:35–43. doi: 10.1101/sqb.1972.036.01.008. [DOI] [PubMed] [Google Scholar]
- Rupert P. B., Ferré-D'Amaré A. R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature. 2001 Apr 12;410(6830):780–786. doi: 10.1038/35071009. [DOI] [PubMed] [Google Scholar]
- Ryder S. P., Ortoleva-Donnelly L., Kosek A. B., Strobel S. A. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 2000;317:92–109. doi: 10.1016/s0076-6879(00)17008-9. [DOI] [PubMed] [Google Scholar]
- Ryder S. P., Strobel S. A. Nucleotide analog interference mapping of the hairpin ribozyme: implications for secondary and tertiary structure formation. J Mol Biol. 1999 Aug 13;291(2):295–311. doi: 10.1006/jmbi.1999.2959. [DOI] [PubMed] [Google Scholar]
- Schmidt S., Beigelman L., Karpeisky A., Usman N., Sorensen U. S., Gait M. J. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. 1996 Feb 15;24(4):573–581. doi: 10.1093/nar/24.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scolnick L. R., Christianson D. W. X-ray crystallographic studies of alanine-65 variants of carbonic anhydrase II reveal the structural basis of compromised proton transfer in catalysis. Biochemistry. 1996 Dec 24;35(51):16429–16434. doi: 10.1021/bi9617872. [DOI] [PubMed] [Google Scholar]
- Strobel S. A., Shetty K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2903–2908. doi: 10.1073/pnas.94.7.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter N. G., Burke J. M., Millar D. P. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat Struct Biol. 1999 Jun;6(6):544–549. doi: 10.1038/9316. [DOI] [PubMed] [Google Scholar]
- Walter N. G., Hampel K. J., Brown K. M., Burke J. M. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J. 1998 Apr 15;17(8):2378–2391. doi: 10.1093/emboj/17.8.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward D. C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem. 1969 Mar 10;244(5):1228–1237. [PubMed] [Google Scholar]
- Wierzchowski J., Wielgus-Kutrowska B., Shugar D. Fluorescence emission properties of 8-azapurines and their nucleosides, and application to the kinetics of the reverse synthetic reaction of purine nucleoside phosphorylase. Biochim Biophys Acta. 1996 May 21;1290(1):9–17. doi: 10.1016/0304-4165(95)00181-6. [DOI] [PubMed] [Google Scholar]
- Young K. J., Vyle J. S., Pickering T. J., Cohen M. A., Holmes S. C., Merkel O., Grasby J. A. The role of essential pyrimidines in the hairpin ribozyme-catalysed reaction. J Mol Biol. 1999 May 21;288(5):853–866. doi: 10.1006/jmbi.1999.2748. [DOI] [PubMed] [Google Scholar]
