Skip to main content
RNA logoLink to RNA
. 2001 Nov;7(11):1628–1637.

Analysis of sequence-specific binding of RNA to Hsp70 and its various homologs indicates the involvement of N- and C-terminal interactions.

C Zimmer 1, A von Gabain 1, T Henics 1
PMCID: PMC1370204  PMID: 11720291

Abstract

Members of the 70-kDa family of molecular chaperones assist in a number of molecular interactions that are essential under both normal and stress conditions. These functions require ATP and co-chaperone molecules and are associated with a cyclic transition of intramolecular conformational changes. As a new putative function, we have previously shown that mammalian Hsp/Hsc70 as well as a distant relative, Hsp110, selectively bind certain RNA sequences via their N-terminal ATP-binding domain. To investigate this phenomenon in more detail, here we examined RNA-binding affinity and specificity of various deletion mutants of human Hsp70. We demonstrate, that, although the N-terminal ATPase domain alone is sufficient for RNA binding, its binding affinity is considerably reduced when compared to that of the full-length protein. Additionally, we provide evidence that binding of RNA to a membrane-immobilized protein partner results in complete loss of RNA sequence specificity. Using various Hsp70 homologs, we show distinct RNA-binding properties of these proteins judged by sequence specificity, ribopolymer sensitivity, and northwestern analysis. Finally, we present data disclosing that RNA binding by DnaK, the Escherichia coli homolog, is influenced by the activity of its co-chaperones, DnaJ and GrpE. We conclude that the RNA-binding capability of this class of molecular chaperones is a conserved feature and it is strongly influenced by the structural and conformational properties. Furthermore, the notion that RNA binding of some Hsp70 family members is influenced by co-chaperones suggests an RNA-binding cycle resembling the protein-binding property of the chaperones.

Full Text

The Full Text of this article is available as a PDF (742.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchberger A., Theyssen H., Schröder H., McCarty J. S., Virgallita G., Milkereit P., Reinstein J., Bukau B. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J Biol Chem. 1995 Jul 14;270(28):16903–16910. doi: 10.1074/jbc.270.28.16903. [DOI] [PubMed] [Google Scholar]
  2. Bukau B., Horwich A. L. The Hsp70 and Hsp60 chaperone machines. Cell. 1998 Feb 6;92(3):351–366. doi: 10.1016/s0092-8674(00)80928-9. [DOI] [PubMed] [Google Scholar]
  3. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  4. Craig E. A., Gambill B. D., Nelson R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402–414. doi: 10.1128/mr.57.2.402-414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis J. E., Voisine C., Craig E. A. Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9269–9276. doi: 10.1073/pnas.96.16.9269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Easton D. P., Kaneko Y., Subjeck J. R. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones. 2000 Oct;5(4):276–290. doi: 10.1379/1466-1268(2000)005<0276:thagsp>2.0.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fung K. L., Hilgenberg L., Wang N. M., Chirico W. J. Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. J Biol Chem. 1996 Aug 30;271(35):21559–21565. doi: 10.1074/jbc.271.35.21559. [DOI] [PubMed] [Google Scholar]
  8. Glick B. S. Can Hsp70 proteins act as force-generating motors? Cell. 1995 Jan 13;80(1):11–14. doi: 10.1016/0092-8674(95)90444-1. [DOI] [PubMed] [Google Scholar]
  9. Guhaniyogi J., Brewer G. Regulation of mRNA stability in mammalian cells. Gene. 2001 Mar 7;265(1-2):11–23. doi: 10.1016/s0378-1119(01)00350-x. [DOI] [PubMed] [Google Scholar]
  10. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  11. Henics T. Differentiation-dependent cytoplasmic distribution and in vivo RNA association of proteins recognized by the 3'-UTR stability element of alpha-globin mRNA in erythroleukemic cells. Biochem Biophys Res Commun. 2000 Dec 9;279(1):40–46. doi: 10.1006/bbrc.2000.3900. [DOI] [PubMed] [Google Scholar]
  12. Henics T., Nagy E., Oh H. J., Csermely P., von Gabain A., Subjeck J. R. Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem. 1999 Jun 11;274(24):17318–17324. doi: 10.1074/jbc.274.24.17318. [DOI] [PubMed] [Google Scholar]
  13. James P., Pfund C., Craig E. A. Functional specificity among Hsp70 molecular chaperones. Science. 1997 Jan 17;275(5298):387–389. doi: 10.1126/science.275.5298.387. [DOI] [PubMed] [Google Scholar]
  14. Johnson J. L., Craig E. A. Protein folding in vivo: unraveling complex pathways. Cell. 1997 Jul 25;90(2):201–204. doi: 10.1016/s0092-8674(00)80327-x. [DOI] [PubMed] [Google Scholar]
  15. Lee-Yoon D., Easton D., Murawski M., Burd R., Subjeck J. R. Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J Biol Chem. 1995 Jun 30;270(26):15725–15733. doi: 10.1074/jbc.270.26.15725. [DOI] [PubMed] [Google Scholar]
  16. Liberek K., Skowyra D., Zylicz M., Johnson C., Georgopoulos C. The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J Biol Chem. 1991 Aug 5;266(22):14491–14496. [PubMed] [Google Scholar]
  17. Lopez-Buesa P., Pfund C., Craig E. A. The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15253–15258. doi: 10.1073/pnas.95.26.15253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malter J. S. Identification of an AUUUA-specific messenger RNA binding protein. Science. 1989 Nov 3;246(4930):664–666. doi: 10.1126/science.2814487. [DOI] [PubMed] [Google Scholar]
  19. Morshauser R. C., Wang H., Flynn G. C., Zuiderweg E. R. The peptide-binding domain of the chaperone protein Hsc70 has an unusual secondary structure topology. Biochemistry. 1995 May 16;34(19):6261–6266. doi: 10.1021/bi00019a001. [DOI] [PubMed] [Google Scholar]
  20. Oh H. J., Easton D., Murawski M., Kaneko Y., Subjeck J. R. The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem. 1999 May 28;274(22):15712–15718. doi: 10.1074/jbc.274.22.15712. [DOI] [PubMed] [Google Scholar]
  21. Ohtsuka K., Hata M. Molecular chaperone function of mammalian Hsp70 and Hsp40--a review. Int J Hyperthermia. 2000 May-Jun;16(3):231–245. doi: 10.1080/026567300285259. [DOI] [PubMed] [Google Scholar]
  22. Pierpaoli E. V., Sandmeier E., Baici A., Schönfeld H. J., Gisler S., Christen P. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J Mol Biol. 1997 Jun 27;269(5):757–768. doi: 10.1006/jmbi.1997.1072. [DOI] [PubMed] [Google Scholar]
  23. Pierpaoli E. V., Sandmeier E., Schönfeld H. J., Christen P. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. J Biol Chem. 1998 Mar 20;273(12):6643–6649. doi: 10.1074/jbc.273.12.6643. [DOI] [PubMed] [Google Scholar]
  24. Rutherford S. L., Zuker C. S. Protein folding and the regulation of signaling pathways. Cell. 1994 Dec 30;79(7):1129–1132. doi: 10.1016/0092-8674(94)90003-5. [DOI] [PubMed] [Google Scholar]
  25. Suh W. C., Burkholder W. F., Lu C. Z., Zhao X., Gottesman M. E., Gross C. A. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15223–15228. doi: 10.1073/pnas.95.26.15223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Suh W. C., Lu C. Z., Gross C. A. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem. 1999 Oct 22;274(43):30534–30539. doi: 10.1074/jbc.274.43.30534. [DOI] [PubMed] [Google Scholar]
  27. Zhu X., Zhao X., Burkholder W. F., Gragerov A., Ogata C. M., Gottesman M. E., Hendrickson W. A. Structural analysis of substrate binding by the molecular chaperone DnaK. Science. 1996 Jun 14;272(5268):1606–1614. doi: 10.1126/science.272.5268.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES