Skip to main content
RNA logoLink to RNA
. 2001 Nov;7(11):1671–1678.

Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization.

L D Sherlin 1, T L Bullock 1, T A Nissan 1, J J Perona 1, F J Lariviere 1, O C Uhlenbeck 1, S A Scaringe 1
PMCID: PMC1370207  PMID: 11720294

Abstract

Preparation of large quantities of RNA molecules of a defined sequence is a prerequisite for biophysical analysis, and is particularly important to the determination of high-resolution structure by X-ray crystallography. We describe improved methods for the production of multimilligram quantities of homogeneous tRNAs, using a combination of chemical synthesis and enzymatic approaches. Transfer RNA half-molecules with a break in the anticodon loop were chemically synthesized on a preparative scale, ligated enzymatically, and cocrystallized with an aminoacyl-tRNA synthetase, yielding crystals diffracting to 2.4 A resolution. Multimilligram quantities of tRNAs with greatly reduced 3' heterogeneity were also produced via transcription by T7 RNA polymerase, utilizing chemically modified DNA half-molecule templates. This latter approach eliminates the need for large-scale plasmid preparations, and yields synthetase cocrystals diffracting to 2.3 A resolution at much lower RNA:protein stoichiometries than previously required. These two approaches developed for a tRNA-synthetase complex permit the detailed structural study of "atomic-group" mutants.

Full Text

The Full Text of this article is available as a PDF (697.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agalarov S. C., Williamson J. R. A hierarchy of RNA subdomains in assembly of the central domain of the 30 S ribosomal subunit. RNA. 2000 Mar;6(3):402–408. doi: 10.1017/s1355838200991945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnez J. G., Steitz T. A. Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry. 1994 Jun 21;33(24):7560–7567. doi: 10.1021/bi00190a008. [DOI] [PubMed] [Google Scholar]
  3. Beuning P. J., Musier-Forsyth K. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers. 1999;52(1):1–28. doi: 10.1002/(SICI)1097-0282(1999)52:1<1::AID-BIP1>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  4. Bruce A. G., Uhlenbeck O. C. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1982 Mar 2;21(5):855–861. doi: 10.1021/bi00534a007. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  6. Bullock T. L., Sherlin L. D., Perona J. J. Tertiary core rearrangements in a tight binding transfer RNA aptamer. Nat Struct Biol. 2000 Jun;7(6):497–504. doi: 10.1038/75910. [DOI] [PubMed] [Google Scholar]
  7. Ferré-D'Amaré A. R., Doudna J. A. Use of cis- and trans-ribozymes to remove 5' and 3' heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 1996 Mar 1;24(5):977–978. doi: 10.1093/nar/24.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
  9. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Han H., Dervan P. B. Visualization of RNA tertiary structure by RNA-EDTA.Fe(II) autocleavage: analysis of tRNA(Phe) with uridine-EDTA.Fe(II) at position 47. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4955–4959. doi: 10.1073/pnas.91.11.4955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helm M., Brulé H., Giegé R., Florentz C. More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs. RNA. 1999 May;5(5):618–621. doi: 10.1017/s1355838299982328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoben P., Söll D. Glutaminyl-tRNA synthetase of Escherichia coli. Methods Enzymol. 1985;113:55–59. doi: 10.1016/s0076-6879(85)13011-9. [DOI] [PubMed] [Google Scholar]
  13. Holowachuk E. W., Ruhoff M. S. Efficient gene synthesis by Klenow assembly/extension-Pfu polymerase amplification (KAPPA) of overlapping oligonucleotides. PCR Methods Appl. 1995 Apr;4(5):299–302. doi: 10.1101/gr.4.5.299. [DOI] [PubMed] [Google Scholar]
  14. Ibba M., Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617–650. doi: 10.1146/annurev.biochem.69.1.617. [DOI] [PubMed] [Google Scholar]
  15. Kaufmann G., Littauer U. Z. Covalent joining of phenylalanine transfer ribonucleic acid half-molecules by T4 RNA ligase. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3741–3745. doi: 10.1073/pnas.71.9.3741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  18. Moran S., Ren R. X., Sheils C. J., Rumney S., 4th, Kool E. T. Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res. 1996 Jun 1;24(11):2044–2052. doi: 10.1093/nar/24.11.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nissan T. A., Oliphant B., Perona J. J. An engineered class I transfer RNA with a class II tertiary fold. RNA. 1999 Mar;5(3):434–445. doi: 10.1017/s1355838299981827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohtsuki T., Vinayak R., Watanabe Y., Kita K., Kawai G., Watanabe K. Automated chemical synthesis of biologically active tRNA having a sequence corresponding to Ascaris suum mitochondrial tRNA(Met) toward NMR measurements. J Biochem. 1996 Dec;120(6):1070–1073. doi: 10.1093/oxfordjournals.jbchem.a021522. [DOI] [PubMed] [Google Scholar]
  21. Perona J. J., Swanson R., Steitz T. A., Söll D. Overproduction and purification of Escherichia coli tRNA(2Gln) and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA(Gln) complex. J Mol Biol. 1988 Jul 5;202(1):121–126. doi: 10.1016/0022-2836(88)90524-4. [DOI] [PubMed] [Google Scholar]
  22. Persson T., Kutzke U., Busch S., Held R., Hartmann R. K. Chemical synthesis and biological investigation of a 77-mer oligoribonucleotide with a sequence corresponding to E. coli tRNA(Asp). Bioorg Med Chem. 2001 Jan;9(1):51–56. doi: 10.1016/s0968-0896(00)00218-2. [DOI] [PubMed] [Google Scholar]
  23. Pleiss J. A., Derrick M. L., Uhlenbeck O. C. T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA. 1998 Oct;4(10):1313–1317. doi: 10.1017/s135583829800106x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  25. Pokrovskaya I. D., Gurevich V. V. In vitro transcription: preparative RNA yields in analytical scale reactions. Anal Biochem. 1994 Aug 1;220(2):420–423. doi: 10.1006/abio.1994.1360. [DOI] [PubMed] [Google Scholar]
  26. Price S. R., Ito N., Oubridge C., Avis J. M., Nagai K. Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol. 1995 Jun 2;249(2):398–408. doi: 10.1006/jmbi.1995.0305. [DOI] [PubMed] [Google Scholar]
  27. Rath V. L., Silvian L. F., Beijer B., Sproat B. S., Steitz T. A. How glutaminyl-tRNA synthetase selects glutamine. Structure. 1998 Apr 15;6(4):439–449. doi: 10.1016/s0969-2126(98)00046-x. [DOI] [PubMed] [Google Scholar]
  28. Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
  29. Satoh A., Takai K., Ouchi R., Yokoyama S., Takaku H. Effects of anticodon 2'-O-methylations on tRNA codon recognition in an Escherichia coli cell-free translation. RNA. 2000 May;6(5):680–686. doi: 10.1017/s1355838200000029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scaringe S. A. Advanced 5'-silyl-2'-orthoester approach to RNA oligonucleotide synthesis. Methods Enzymol. 2000;317:3–18. doi: 10.1016/s0076-6879(00)17003-x. [DOI] [PubMed] [Google Scholar]
  31. Scott W. G., Finch J. T., Grenfell R., Fogg J., Smith T., Gait M. J., Klug A. Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J Mol Biol. 1995 Jul 14;250(3):327–332. doi: 10.1006/jmbi.1995.0380. [DOI] [PubMed] [Google Scholar]
  32. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  33. Sherlin L. D., Bullock T. L., Newberry K. J., Lipman R. S., Hou Y. M., Beijer B., Sproat B. S., Perona J. J. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. J Mol Biol. 2000 Jun 2;299(2):431–446. doi: 10.1006/jmbi.2000.3749. [DOI] [PubMed] [Google Scholar]
  34. Sussman D., Nix J. C., Wilson C. The structural basis for molecular recognition by the vitamin B 12 RNA aptamer. Nat Struct Biol. 2000 Jan;7(1):53–57. doi: 10.1038/71253. [DOI] [PubMed] [Google Scholar]
  35. Wedekind J. E., McKay D. B. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat Struct Biol. 1999 Mar;6(3):261–268. doi: 10.1038/6700. [DOI] [PubMed] [Google Scholar]
  36. Wedekind J. E., McKay D. B. Purification, crystallization, and X-ray diffraction analysis of small ribozymes. Methods Enzymol. 2000;317:149–168. doi: 10.1016/s0076-6879(00)17013-2. [DOI] [PubMed] [Google Scholar]
  37. Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES