Abstract
tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics.
Full Text
The Full Text of this article is available as a PDF (763.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abo T., Inada T., Ogawa K., Aiba H. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 2000 Jul 17;19(14):3762–3769. doi: 10.1093/emboj/19.14.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bilgin N., Richter A. A., Ehrenberg M., Dahlberg A. E., Kurland C. G. Ribosomal RNA and protein mutants resistant to spectinomycin. EMBO J. 1990 Mar;9(3):735–739. doi: 10.1002/j.1460-2075.1990.tb08167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Carter A. P., Clemons W. M., Brodersen D. E., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000 Sep 21;407(6802):340–348. doi: 10.1038/35030019. [DOI] [PubMed] [Google Scholar]
- Elhai J., Wolk C. P. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene. 1988 Aug 15;68(1):119–138. doi: 10.1016/0378-1119(88)90605-1. [DOI] [PubMed] [Google Scholar]
- Fernández-González B., Sandmann G., Vioque A. A new type of asymmetrically acting beta-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1997 Apr 11;272(15):9728–9733. doi: 10.1074/jbc.272.15.9728. [DOI] [PubMed] [Google Scholar]
- Gabashvili I. S., Gregory S. T., Valle M., Grassucci R., Worbs M., Wahl M. C., Dahlberg A. E., Frank J. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell. 2001 Jul;8(1):181–188. doi: 10.1016/s1097-2765(01)00293-3. [DOI] [PubMed] [Google Scholar]
- García-Domínguez M., Muro-Pastor M. I., Reyes J. C., Florencio F. J. Light-dependent regulation of cyanobacterial phytochrome expression. J Bacteriol. 2000 Jan;182(1):38–44. doi: 10.1128/jb.182.1.38-44.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottesman S., Roche E., Zhou Y., Sauer R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998 May 1;12(9):1338–1347. doi: 10.1101/gad.12.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C., Wolfgang M. C., Withey J., Koomey M., Friedman D. I. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J. 2000 Mar 1;19(5):1098–1107. doi: 10.1093/emboj/19.5.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchison C. A., Peterson S. N., Gill S. R., Cline R. T., White O., Fraser C. M., Smith H. O., Venter J. C. Global transposon mutagenesis and a minimal Mycoplasma genome. Science. 1999 Dec 10;286(5447):2165–2169. doi: 10.1126/science.286.5447.2165. [DOI] [PubMed] [Google Scholar]
- Jain S. K., Gurevitz M., Apirion D. A small RNA that complements mutants in the RNA processing enzyme ribonuclease P. J Mol Biol. 1982 Dec 15;162(3):515–533. doi: 10.1016/0022-2836(82)90386-2. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
- Karzai A. W., Roche E. D., Sauer R. T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol. 2000 Jun;7(6):449–455. doi: 10.1038/75843. [DOI] [PubMed] [Google Scholar]
- Karzai A. W., Sauer R. T. Protein factors associated with the SsrA.SmpB tagging and ribosome rescue complex. Proc Natl Acad Sci U S A. 2001 Feb 27;98(6):3040–3044. doi: 10.1073/pnas.051628298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karzai A. W., Susskind M. M., Sauer R. T. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 1999 Jul 1;18(13):3793–3799. doi: 10.1093/emboj/18.13.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knudsen B., Wower J., Zwieb C., Gorodkin J. tmRDB (tmRNA database). Nucleic Acids Res. 2001 Jan 1;29(1):171–172. doi: 10.1093/nar/29.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9223–9227. doi: 10.1073/pnas.91.20.9223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kressler D., de la Cruz J., Rojo M., Linder P. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Dec;17(12):7283–7294. doi: 10.1128/mcb.17.12.7283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levchenko I., Seidel M., Sauer R. T., Baker T. A. A specificity-enhancing factor for the ClpXP degradation machine. Science. 2000 Sep 29;289(5488):2354–2356. doi: 10.1126/science.289.5488.2354. [DOI] [PubMed] [Google Scholar]
- Muto A., Fujihara A., Ito K. I., Matsuno J., Ushida C., Himeno H. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells. 2000 Aug;5(8):627–635. doi: 10.1046/j.1365-2443.2000.00356.x. [DOI] [PubMed] [Google Scholar]
- Muto A., Ushida C., Himeno H. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci. 1998 Jan;23(1):25–29. doi: 10.1016/s0968-0004(97)01159-6. [DOI] [PubMed] [Google Scholar]
- Navarro F., Florencio F. J. The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth. Plant Physiol. 1996 Aug;111(4):1067–1075. doi: 10.1104/pp.111.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
- Poulsen S. M., Kofoed C., Vester B. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J Mol Biol. 2000 Dec 1;304(3):471–481. doi: 10.1006/jmbi.2000.4229. [DOI] [PubMed] [Google Scholar]
- Roche E. D., Sauer R. T. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem. 2001 May 23;276(30):28509–28515. doi: 10.1074/jbc.M103864200. [DOI] [PubMed] [Google Scholar]
- Roche E. D., Sauer R. T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 1999 Aug 16;18(16):4579–4589. doi: 10.1093/emboj/18.16.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Fonseca C., Amils R., Garrett R. A. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol. 1995 Mar 24;247(2):224–235. doi: 10.1006/jmbi.1994.0135. [DOI] [PubMed] [Google Scholar]
- Rudinger-Thirion J., Giegé R., Felden B. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA. 1999 Aug;5(8):989–992. doi: 10.1017/s135583829999101x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tadaki T., Fukushima M., Ushida C., Himeno H., Muto A. Interaction of 10Sa RNA with ribosomes in Escherichia coli. FEBS Lett. 1996 Dec 16;399(3):223–226. doi: 10.1016/s0014-5793(96)01330-0. [DOI] [PubMed] [Google Scholar]
- Tous C., Vega-Palas M. A., Vioque A. Conditional expression of RNase P in the cyanobacterium Synechocystis sp. PCC6803 allows detection of precursor RNAs. Insight in the in vivo maturation pathway of transfer and other stable RNAs. J Biol Chem. 2001 May 30;276(31):29059–29066. doi: 10.1074/jbc.M103418200. [DOI] [PubMed] [Google Scholar]
- Vioque A. Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. Nucleic Acids Res. 1992 Dec 11;20(23):6331–6337. doi: 10.1093/nar/20.23.6331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wassarman K. M., Zhang A., Storz G. Small RNAs in Escherichia coli. Trends Microbiol. 1999 Jan;7(1):37–45. doi: 10.1016/s0966-842x(98)01379-1. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Sugita M., Sugiura M. Identification of 10Sa RNA (tmRNA) homologues from the cyanobacterium Synechococcus sp. strain PCC6301 and related organisms. Biochim Biophys Acta. 1998 Mar 4;1396(1):97–104. doi: 10.1016/s0167-4781(97)00180-2. [DOI] [PubMed] [Google Scholar]
- Withey J., Friedman D. Analysis of the role of trans-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J Bacteriol. 1999 Apr;181(7):2148–2157. doi: 10.1128/jb.181.7.2148-2157.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Y., Mori T., Johnson C. H. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J. 2000 Jul 3;19(13):3349–3357. doi: 10.1093/emboj/19.13.3349. [DOI] [PMC free article] [PubMed] [Google Scholar]