Skip to main content
RNA logoLink to RNA
. 2001 Dec;7(12):1728–1742. doi: 10.1017/s135583820101158x

A conserved role of a DEAD box helicase in mRNA masking.

N Minshall 1, G Thom 1, N Standart 1
PMCID: PMC1370213  PMID: 11780630

Abstract

Clam p82 is a member of the cytoplasmic polyadenylation element-binding protein (CPEB) family of RNA-binding proteins and serves dual functions in regulating gene expression in early development. In the oocyte, p82/CPEB is a translational repressor, whereas in the activated egg, it acts as a polyadenylation factor. Coimmunoprecipitations were performed with p82 antibodies in clam oocyte and egg lysates to identify stage-regulated accessory factors. p47 coprecipitates with p82 from oocyte lysates in an RNA-dependent manner and is absent from egg lysate p92-bound material. Clam p47 is a member of the RCK/p54 family of DEAD box RNA helicases. Xp54, the Xenopus homolog, with bona fide helicase activity, is an abundant and integral component of stored mRNP in oocytes (Ladomery et al., 1997). In oocytes, clam p47 and p82/CPEB are found in large cytoplasmic mRNP complexes. Whereas the helicase level is constant during embryogenesis, in contrast to CPEB, clam p47 translocates to nuclei at the two-cell stage. To address the role of this class of helicase in masking, Xp54 was tethered via 3' UTR MS2-binding sites to firefly luciferase, following microinjection of fusion protein and nonadenylated reporter mRNAs into Xenopus oocytes. Tethered helicase repressed luciferase translation three- to fivefold and, strikingly, mutations in two helicase motifs (DEAD--> DQAD and HRIGR-->HRIGQ), activated translation three- to fourfold, relative to MS2. These data suggest that this helicase family represses translation of maternal mRNA in early development, and that its activity may be attenuated during meiotic maturation, prior to cytoplasmic polyadenylation.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akao Y., Seto M., Yamamoto K., Iida S., Nakazawa S., Inazawa J., Abe T., Takahashi T., Ueda R. The RCK gene associated with t(11;14) translocation is distinct from the MLL/ALL-1 gene with t(4;11) and t(11;19) translocations. Cancer Res. 1992 Nov 1;52(21):6083–6087. [PubMed] [Google Scholar]
  2. Ballantyne S., Bilger A., Astrom J., Virtanen A., Wickens M. Poly (A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA. 1995 Mar;1(1):64–78. [PMC free article] [PubMed] [Google Scholar]
  3. Bally-Cuif L., Schatz W. J., Ho R. K. Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech Dev. 1998 Sep;77(1):31–47. doi: 10.1016/s0925-4773(98)00109-9. [DOI] [PubMed] [Google Scholar]
  4. Barkoff A. F., Dickson K. S., Gray N. K., Wickens M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev Biol. 2000 Apr 1;220(1):97–109. doi: 10.1006/dbio.2000.9613. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth A., Welk J., MacNicol A. M. The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3'-untranslated region. Dev Biol. 2000 Nov 15;227(2):706–719. doi: 10.1006/dbio.2000.9922. [DOI] [PubMed] [Google Scholar]
  6. Coller J. M., Gray N. K., Wickens M. P. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 1998 Oct 15;12(20):3226–3235. doi: 10.1101/gad.12.20.3226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coller J. M., Tucker M., Sheth U., Valencia-Sanchez M. A., Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001 Dec;7(12):1717–1727. doi: 10.1017/s135583820101994x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickson K. S., Bilger A., Ballantyne S., Wickens M. P. The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. Mol Cell Biol. 1999 Aug;19(8):5707–5717. doi: 10.1128/mcb.19.8.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuller-Pace F. V. RNA helicases: modulators of RNA structure. Trends Cell Biol. 1994 Aug;4(8):271–274. doi: 10.1016/0962-8924(94)90210-0. [DOI] [PubMed] [Google Scholar]
  10. Gebauer F., Richter J. D. Cloning and characterization of a Xenopus poly(A) polymerase. Mol Cell Biol. 1995 Mar;15(3):1422–1430. doi: 10.1128/mcb.15.3.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gebauer F., Richter J. D. Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14602–14607. doi: 10.1073/pnas.93.25.14602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gray N. K., Coller J. M., Dickson K. S., Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 2000 Sep 1;19(17):4723–4733. doi: 10.1093/emboj/19.17.4723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Groisman I., Huang Y. S., Mendez R., Cao Q., Theurkauf W., Richter J. D. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell. 2000 Oct 27;103(3):435–447. doi: 10.1016/s0092-8674(00)00135-5. [DOI] [PubMed] [Google Scholar]
  14. Hake L. E., Mendez R., Richter J. D. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol. 1998 Feb;18(2):685–693. doi: 10.1128/mcb.18.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hake L. E., Richter J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994 Nov 18;79(4):617–627. doi: 10.1016/0092-8674(94)90547-9. [DOI] [PubMed] [Google Scholar]
  16. Hunt T., Luca F. C., Ruderman J. V. The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J Cell Biol. 1992 Feb;116(3):707–724. doi: 10.1083/jcb.116.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iost I., Dreyfus M., Linder P. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem. 1999 Jun 18;274(25):17677–17683. doi: 10.1074/jbc.274.25.17677. [DOI] [PubMed] [Google Scholar]
  18. Katsu Y., Minshall N., Nagahama Y., Standart N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev Biol. 1999 May 1;209(1):186–199. doi: 10.1006/dbio.1999.9247. [DOI] [PubMed] [Google Scholar]
  19. Ladomery M., Wade E., Sommerville J. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res. 1997 Mar 1;25(5):965–973. doi: 10.1093/nar/25.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lantz V., Chang J. S., Horabin J. I., Bopp D., Schedl P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 1994 Mar 1;8(5):598–613. doi: 10.1101/gad.8.5.598. [DOI] [PubMed] [Google Scholar]
  21. Lu D., Yunis J. J. Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic Acids Res. 1992 Apr 25;20(8):1967–1972. doi: 10.1093/nar/20.8.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luitjens C., Gallegos M., Kraemer B., Kimble J., Wickens M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 2000 Oct 15;14(20):2596–2609. doi: 10.1101/gad.831700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lüking A., Stahl U., Schmidt U. The protein family of RNA helicases. Crit Rev Biochem Mol Biol. 1998;33(4):259–296. doi: 10.1080/10409239891204233. [DOI] [PubMed] [Google Scholar]
  24. Maekawa H., Nakagawa T., Uno Y., Kitamura K., Shimoda C. The ste13+ gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1994 Sep 1;244(5):456–464. doi: 10.1007/BF00583896. [DOI] [PubMed] [Google Scholar]
  25. Mendez R., Hake L. E., Andresson T., Littlepage L. E., Ruderman J. V., Richter J. D. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature. 2000 Mar 16;404(6775):302–307. doi: 10.1038/35005126. [DOI] [PubMed] [Google Scholar]
  26. Mendez R., Murthy K. G., Ryan K., Manley J. L., Richter J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000 Nov;6(5):1253–1259. doi: 10.1016/s1097-2765(00)00121-0. [DOI] [PubMed] [Google Scholar]
  27. Minshall N., Walker J., Dale M., Standart N. Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RNA. 1999 Jan;5(1):27–38. doi: 10.1017/s1355838299981220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moriya H., Isono K. Analysis of genetic interactions between DHH1, SSD1 and ELM1 indicates their involvement in cellular morphology determination in Saccharomyces cerevisiae. Yeast. 1999 Apr;15(6):481–496. doi: 10.1002/(SICI)1097-0061(199904)15:6<481::AID-YEA391>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  29. Nakagawa Y., Morikawa H., Hirata I., Shiozaki M., Matsumoto A., Maemura K., Nishikawa T., Niki M., Tanigawa N., Ikegami M. Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br J Cancer. 1999 May;80(5-6):914–917. doi: 10.1038/sj.bjc.6690441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakahata S., Katsu Y., Mita K., Inoue K., Nagahama Y., Yamashita M. Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J Biol Chem. 2001 Mar 29;276(24):20945–20953. doi: 10.1074/jbc.M010528200. [DOI] [PubMed] [Google Scholar]
  31. Nakamura A., Amikura R., Hanyu K., Kobayashi S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development. 2001 Sep;128(17):3233–3242. doi: 10.1242/dev.128.17.3233. [DOI] [PubMed] [Google Scholar]
  32. Navarro R. E., Shim E. Y., Kohara Y., Singson A., Blackwell T. K. cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development. 2001 Sep;128(17):3221–3232. doi: 10.1242/dev.128.17.3221. [DOI] [PubMed] [Google Scholar]
  33. Pause A., Méthot N., Sonenberg N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cell Biol. 1993 Nov;13(11):6789–6798. doi: 10.1128/mcb.13.11.6789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pause A., Méthot N., Svitkin Y., Merrick W. C., Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 1994 Mar 1;13(5):1205–1215. doi: 10.1002/j.1460-2075.1994.tb06370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pause A., Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 1992 Jul;11(7):2643–2654. doi: 10.1002/j.1460-2075.1992.tb05330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Paynton B. V. RNA-binding proteins in mouse oocytes and embryos: expression of genes encoding Y box, DEAD box RNA helicase, and polyA binding proteins. Dev Genet. 1998;23(4):285–298. doi: 10.1002/(SICI)1520-6408(1998)23:4<285::AID-DVG4>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  37. Reverte C. G., Ahearn M. D., Hake L. E. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol. 2001 Mar 15;231(2):447–458. doi: 10.1006/dbio.2001.0153. [DOI] [PubMed] [Google Scholar]
  38. Schmitt C., von Kobbe C., Bachi A., Panté N., Rodrigues J. P., Boscheron C., Rigaut G., Wilm M., Séraphin B., Carmo-Fonseca M. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 1999 Aug 2;18(15):4332–4347. doi: 10.1093/emboj/18.15.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwartz D. C., Parker R. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol. 2000 Nov;20(21):7933–7942. doi: 10.1128/mcb.20.21.7933-7942.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Seto M., Yamamoto K., Takahashi T., Ueda R. Cloning and expression of a murine cDNA homologous to the human RCK/P54, a lymphoma-linked chromosomal translocation junction gene on 11q23. Gene. 1995 Dec 12;166(2):293–296. doi: 10.1016/0378-1119(95)00559-5. [DOI] [PubMed] [Google Scholar]
  41. Stebbins-Boaz B., Cao Q., de Moor C. H., Mendez R., Richter J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999 Dec;4(6):1017–1027. doi: 10.1016/s1097-2765(00)80230-0. [DOI] [PubMed] [Google Scholar]
  42. Stebbins-Boaz B., Hake L. E., Richter J. D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 1996 May 15;15(10):2582–2592. [PMC free article] [PubMed] [Google Scholar]
  43. Strahl-Bolsinger S., Tanner W. A yeast gene encoding a putative RNA helicase of the "DEAD"-box family. Yeast. 1993 Apr;9(4):429–432. doi: 10.1002/yea.320090414. [DOI] [PubMed] [Google Scholar]
  44. Uetz P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000 Feb 10;403(6770):623–627. doi: 10.1038/35001009. [DOI] [PubMed] [Google Scholar]
  45. Voeltz G. K., Steitz J. A. AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development. Mol Cell Biol. 1998 Dec;18(12):7537–7545. doi: 10.1128/mcb.18.12.7537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wakiyama M., Imataka H., Sonenberg N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol. 2000 Sep 21;10(18):1147–1150. doi: 10.1016/s0960-9822(00)00701-6. [DOI] [PubMed] [Google Scholar]
  47. Walker J., Dale M., Standart N. Unmasking mRNA in clam oocytes: role of phosphorylation of a 3' UTR masking element-binding protein at fertilization. Dev Biol. 1996 Jan 10;173(1):292–305. doi: 10.1006/dbio.1996.0024. [DOI] [PubMed] [Google Scholar]
  48. Walker J., Minshall N., Hake L., Richter J., Standart N. The clam 3' UTR masking element-binding protein p82 is a member of the CPEB family. RNA. 1999 Jan;5(1):14–26. doi: 10.1017/s1355838299981219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Welk J. F., Charlesworth A., Smith G. D., MacNicol A. M. Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene. 2001 Jan 24;263(1-2):113–120. doi: 10.1016/s0378-1119(00)00588-6. [DOI] [PubMed] [Google Scholar]
  50. Wilhelm J. E., Mansfield J., Hom-Booher N., Wang S., Turck C. W., Hazelrigg T., Vale R. D. Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol. 2000 Feb 7;148(3):427–440. doi: 10.1083/jcb.148.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wu L., Wells D., Tay J., Mendis D., Abbott M. A., Barnitt A., Quinlan E., Heynen A., Fallon J. R., Richter J. D. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron. 1998 Nov;21(5):1129–1139. doi: 10.1016/s0896-6273(00)80630-3. [DOI] [PubMed] [Google Scholar]
  52. Wu X., Palazzo R. E. Differential regulation of maternal vs. paternal centrosomes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1397–1402. doi: 10.1073/pnas.96.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yang M., Murray M. T., Kurkinen M. A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J Biol Chem. 1997 May 23;272(21):13527–13533. doi: 10.1074/jbc.272.21.13527. [DOI] [PubMed] [Google Scholar]
  54. Zhang S., Williams C. J., Wormington M., Stevens A., Peltz S. W. Monitoring mRNA decapping activity. Methods. 1999 Jan;17(1):46–51. doi: 10.1006/meth.1998.0706. [DOI] [PubMed] [Google Scholar]
  55. de Melo Neto O. P., Walker J. A., Martins de Sa C. M., Standart N. Levels of free PABP are limited by newly polyadenylated mRNA in early Spisula embryogenesis. Nucleic Acids Res. 2000 Sep 1;28(17):3346–3353. doi: 10.1093/nar/28.17.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. de Moor C. H., Richter J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 1999 Apr 15;18(8):2294–2303. doi: 10.1093/emboj/18.8.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. de Valoir T., Tucker M. A., Belikoff E. J., Camp L. A., Bolduc C., Beckingham K. A second maternally expressed Drosophila gene encodes a putative RNA helicase of the "DEAD box" family. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2113–2117. doi: 10.1073/pnas.88.6.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. de la Cruz J., Kressler D., Linder P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci. 1999 May;24(5):192–198. doi: 10.1016/s0968-0004(99)01376-6. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES