Skip to main content
RNA logoLink to RNA
. 2001 Dec;7(12):1781–1792.

Small bristles, the Drosophila ortholog of NXF-1, is essential for mRNA export throughout development.

G S Wilkie 1, V Zimyanin 1, R Kirby 1, C Korey 1, H Francis-Lang 1, D Van Vactor 1, I Davis 1
PMCID: PMC1370217  PMID: 11780634

Abstract

We identified a temperature-sensitive allele of small bristles (sbr), the Drosophila ortholog of human TAP/NXF-1 and yeast Mex67, in a screen for mutants defective in mRNA export. We show that sbr is essential for the nuclear export of all mRNAs tested in a wide range of tissues and times in development. High resolution and sensitive in situ hybridization detect the rapid accumulation of individual mRNA species in sbr mutant nuclei in particles that are distinct from nascent transcript foci and resemble wild-type export intermediates. The particles become more numerous and intense with increasing time at the restrictive temperature and are exported very rapidly after shifting back to the permissive temperature. The mRNA export block is not due indirectly to a defect in splicing, nuclear protein import, or aberrant nuclear ultrastructure, suggesting that in sbr mutants, mRNA is competent for export but fails to dock or translocate through NPCs. We conclude that NXF-1 is an essential ubiquitous export factor for all mRNAs throughout development in higher eukaryotes.

Full Text

The Full Text of this article is available as a PDF (10.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arking R. Temperature-sensitive cell-lethal mutants of drosophila: isolation and characterization. Genetics. 1975 Jul;(3):519–537. doi: 10.1093/genetics/80.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachi A., Braun I. C., Rodrigues J. P., Panté N., Ribbeck K., von Kobbe C., Kutay U., Wilm M., Görlich D., Carmo-Fonseca M. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA. 2000 Jan;6(1):136–158. doi: 10.1017/s1355838200991994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baurén G., Wieslander L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell. 1994 Jan 14;76(1):183–192. doi: 10.1016/0092-8674(94)90182-1. [DOI] [PubMed] [Google Scholar]
  4. Bear J., Tan W., Zolotukhin A. S., Tabernero C., Hudson E. A., Felber B. K. Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element of the type D retrovirus mRNAs. Mol Cell Biol. 1999 Sep;19(9):6306–6317. doi: 10.1128/mcb.19.9.6306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun I. C., Rohrbach E., Schmitt C., Izaurralde E. TAP binds to the constitutive transport element (CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. EMBO J. 1999 Apr 1;18(7):1953–1965. doi: 10.1093/emboj/18.7.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown J. A., Bharathi A., Ghosh A., Whalen W., Fitzgerald E., Dhar R. A mutation in the Schizosaccharomyces pombe rae1 gene causes defects in poly(A)+ RNA export and in the cytoskeleton. J Biol Chem. 1995 Mar 31;270(13):7411–7419. doi: 10.1074/jbc.270.13.7411. [DOI] [PubMed] [Google Scholar]
  7. Conti E., Izaurralde E. Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol. 2001 Jun;13(3):310–319. doi: 10.1016/s0955-0674(00)00213-1. [DOI] [PubMed] [Google Scholar]
  8. Custódio N., Carmo-Fonseca M., Geraghty F., Pereira H. S., Grosveld F., Antoniou M. Inefficient processing impairs release of RNA from the site of transcription. EMBO J. 1999 May 17;18(10):2855–2866. doi: 10.1093/emboj/18.10.2855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis I., Girdham C. H., O'Farrell P. H. A nuclear GFP that marks nuclei in living Drosophila embryos; maternal supply overcomes a delay in the appearance of zygotic fluorescence. Dev Biol. 1995 Aug;170(2):726–729. doi: 10.1006/dbio.1995.1251. [DOI] [PubMed] [Google Scholar]
  10. Davis I., Ish-Horowicz D. Apical localization of pair-rule transcripts requires 3' sequences and limits protein diffusion in the Drosophila blastoderm embryo. Cell. 1991 Nov 29;67(5):927–940. doi: 10.1016/0092-8674(91)90366-7. [DOI] [PubMed] [Google Scholar]
  11. Doye V., Hurt E. From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol. 1997 Jun;9(3):401–411. doi: 10.1016/s0955-0674(97)80014-2. [DOI] [PubMed] [Google Scholar]
  12. Edgar B. A., Weir M. P., Schubiger G., Kornberg T. Repression and turnover pattern fushi tarazu RNA in the early Drosophila embryo. Cell. 1986 Dec 5;47(5):747–754. doi: 10.1016/0092-8674(86)90517-9. [DOI] [PubMed] [Google Scholar]
  13. Eeken J. C., Sobels F. H., Hyland V., Schalet A. P. Distribution of MR-induced sex-linked recessive lethal mutations in Drosophila melanogaster. Mutat Res. 1985 Jun-Jul;150(1-2):261–275. doi: 10.1016/0027-5107(85)90122-8. [DOI] [PubMed] [Google Scholar]
  14. Evgen'ev M. B., Denisenko O. N. Vliianie ts-mutatsii na ékspressiiu genov, indutsiruemykh teplovym shokom u Drosophila melanogaster. Soobshchenie III. Sintez belkov, rodstvennykh BShT70. Genetika. 1990 Feb;26(2):266–271. [PubMed] [Google Scholar]
  15. Gorsch L. C., Dockendorff T. C., Cole C. N. A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J Cell Biol. 1995 May;129(4):939–955. doi: 10.1083/jcb.129.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grüter P., Tabernero C., von Kobbe C., Schmitt C., Saavedra C., Bachi A., Wilm M., Felber B. K., Izaurralde E. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell. 1998 Apr;1(5):649–659. doi: 10.1016/s1097-2765(00)80065-9. [DOI] [PubMed] [Google Scholar]
  17. Guzik B. W., Levesque L., Prasad S., Bor Y. C., Black B. E., Paschal B. M., Rekosh D., Hammarskjöld M. L. NXT1 (p15) is a crucial cellular cofactor in TAP-dependent export of intron-containing RNA in mammalian cells. Mol Cell Biol. 2001 Apr;21(7):2545–2554. doi: 10.1128/MCB.21.7.2545-2554.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heath C. V., Copeland C. S., Amberg D. C., Del Priore V., Snyder M., Cole C. N. Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated with mutation of the Saccharomyces cerevisiae RAT2/NUP120 gene. J Cell Biol. 1995 Dec;131(6 Pt 2):1677–1697. doi: 10.1083/jcb.131.6.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Herold A., Klymenko T., Izaurralde E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA. 2001 Dec;7(12):1768–1780. [PMC free article] [PubMed] [Google Scholar]
  20. Herold A., Suyama M., Rodrigues J. P., Braun I. C., Kutay U., Carmo-Fonseca M., Bork P., Izaurralde E. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol. 2000 Dec;20(23):8996–9008. doi: 10.1128/mcb.20.23.8996-9008.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hurt E., Strässer K., Segref A., Bailer S., Schlaich N., Presutti C., Tollervey D., Jansen R. Mex67p mediates nuclear export of a variety of RNA polymerase II transcripts. J Biol Chem. 2000 Mar 24;275(12):8361–8368. doi: 10.1074/jbc.275.12.8361. [DOI] [PubMed] [Google Scholar]
  22. Jensen T. H., Patricio K., McCarthy T., Rosbash M. A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol Cell. 2001 Apr;7(4):887–898. doi: 10.1016/s1097-2765(01)00232-5. [DOI] [PubMed] [Google Scholar]
  23. Kang Y., Cullen B. R. The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev. 1999 May 1;13(9):1126–1139. doi: 10.1101/gad.13.9.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katahira J., Strässer K., Podtelejnikov A., Mann M., Jung J. U., Hurt E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 1999 May 4;18(9):2593–2609. doi: 10.1093/emboj/18.9.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kopczynski C. C., Muskavitch M. A. Introns excised from the Delta primary transcript are localized near sites of Delta transcription. J Cell Biol. 1992 Nov;119(3):503–512. doi: 10.1083/jcb.119.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kumar J. P., Wilkie G. S., Tekotte H., Moses K., Davis I. Perturbing nuclear transport in Drosophila eye imaginal discs causes specific cell adhesion and axon guidance defects. Dev Biol. 2001 Dec 15;240(2):315–325. doi: 10.1006/dbio.2001.0468. [DOI] [PubMed] [Google Scholar]
  27. Le Hir H., Izaurralde E., Maquat L. E., Moore M. J. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 2000 Dec 15;19(24):6860–6869. doi: 10.1093/emboj/19.24.6860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LeMaire M. F., Thummel C. S. Splicing precedes polyadenylation during Drosophila E74A transcription. Mol Cell Biol. 1990 Nov;10(11):6059–6063. doi: 10.1128/mcb.10.11.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee M. S., Silver P. A. RNA movement between the nucleus and the cytoplasm. Curr Opin Genet Dev. 1997 Apr;7(2):212–219. doi: 10.1016/s0959-437x(97)80131-1. [DOI] [PubMed] [Google Scholar]
  30. Lefevre G., Jr The eccentricity of vermilion deficiencies in Drosophila melanogaster. Genetics. 1969 Nov;63(3):589–600. doi: 10.1093/genetics/63.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Legrain P., Rosbash M. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell. 1989 May 19;57(4):573–583. doi: 10.1016/0092-8674(89)90127-x. [DOI] [PubMed] [Google Scholar]
  32. Liker E., Fernandez E., Izaurralde E., Conti E. The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J. 2000 Nov 1;19(21):5587–5598. doi: 10.1093/emboj/19.21.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. MacDougall N., Lad Y., Wilkie G. S., Francis-Lang H., Sullivan W., Davis I. Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. Development. 2001 Mar;128(5):665–673. doi: 10.1242/dev.128.5.665. [DOI] [PubMed] [Google Scholar]
  34. Mamon L. A., Kutskova Iu A. Rol' belkov teplovogo shoka v vosstanovlenii kletochnoi proliferatsii posle vozdeistviia vysokoi temperaturoi na lichinok Drosophila melanogaster. Genetika. 1993 May;29(5):791–798. [PubMed] [Google Scholar]
  35. Murphy R., Watkins J. L., Wente S. R. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol Biol Cell. 1996 Dec;7(12):1921–1937. doi: 10.1091/mbc.7.12.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pritchard C. E., Fornerod M., Kasper L. H., van Deursen J. M. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol. 1999 Apr 19;145(2):237–254. doi: 10.1083/jcb.145.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rodrigues J. P., Rode M., Gatfield D., Blencowe B. J., Carmo-Fonseca M., Izaurralde E. REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc Natl Acad Sci U S A. 2001 Jan 23;98(3):1030–1035. doi: 10.1073/pnas.031586198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Santos-Rosa H., Moreno H., Simos G., Segref A., Fahrenkrog B., Panté N., Hurt E. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol. 1998 Nov;18(11):6826–6838. doi: 10.1128/mcb.18.11.6826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schmitt C., von Kobbe C., Bachi A., Panté N., Rodrigues J. P., Boscheron C., Rigaut G., Wilm M., Séraphin B., Carmo-Fonseca M. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 1999 Aug 2;18(15):4332–4347. doi: 10.1093/emboj/18.15.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Segref A., Sharma K., Doye V., Hellwig A., Huber J., Lührmann R., Hurt E. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 1997 Jun 2;16(11):3256–3271. doi: 10.1093/emboj/16.11.3256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shermoen A. W., O'Farrell P. H. Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell. 1991 Oct 18;67(2):303–310. doi: 10.1016/0092-8674(91)90182-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stutz F., Bachi A., Doerks T., Braun I. C., Séraphin B., Wilm M., Bork P., Izaurralde E. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA. 2000 Apr;6(4):638–650. doi: 10.1017/s1355838200000078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Suyama M., Doerks T., Braun I. C., Sattler M., Izaurralde E., Bork P. Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins. EMBO Rep. 2000 Jul;1(1):53–58. doi: 10.1093/embo-reports/kvd009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tan W., Zolotukhin A. S., Bear J., Patenaude D. J., Felber B. K. The mRNA export in Caenorhabditis elegans is mediated by Ce-NXF-1, an ortholog of human TAP/NXF and Saccharomyces cerevisiae Mex67p. RNA. 2000 Dec;6(12):1762–1772. doi: 10.1017/s1355838200000832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  46. Watkins J. L., Murphy R., Emtage J. L., Wente S. R. The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6779–6784. doi: 10.1073/pnas.95.12.6779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wilkie G. S., Davis I. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell. 2001 Apr 20;105(2):209–219. doi: 10.1016/s0092-8674(01)00312-9. [DOI] [PubMed] [Google Scholar]
  48. Wilkie G. S., Shermoen A. W., O'Farrell P. H., Davis I. Transcribed genes are localized according to chromosomal position within polarized Drosophila embryonic nuclei. Curr Biol. 1999 Nov 4;9(21):1263–1266. doi: 10.1016/s0960-9822(99)80509-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yoon J. H., Love D. C., Guhathakurta A., Hanover J. A., Dhar R. Mex67p of Schizosaccharomyces pombe interacts with Rae1p in mediating mRNA export. Mol Cell Biol. 2000 Dec;20(23):8767–8782. doi: 10.1128/mcb.20.23.8767-8782.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhou Z., Luo M. J., Straesser K., Katahira J., Hurt E., Reed R. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature. 2000 Sep 21;407(6802):401–405. doi: 10.1038/35030160. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES