Skip to main content
RNA logoLink to RNA
. 2002 Jan;8(1):16–28. doi: 10.1017/s1355838202012086

Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression.

Claire Bertrand 1, Marie Françoise Prère 1, Raymond F Gesteland 1, John F Atkins 1, Olivier Fayet 1
PMCID: PMC1370227  PMID: 11871658

Abstract

Translating ribosomes can shift reading frame at specific sites with high efficiency for gene expression purposes. The most common type of shift to the -1 frame involves a tandem realignment of two anticodons from pairing with mRNA sequence of the form X XXY YYZ to XXX YYY Z where the spaces indicate the reading frame. The predominant -1 shift site of this type in eubacteria is A AAA AAG. The present work shows that in Escherichia coli the identity of the 6 nt 3' of this sequence can be responsible for a 14-fold variation in frameshift frequency. The first 3' nucleotide has the primary effect, with, in order of decreasing efficiency, U > C > A > G. This effect is independent of other stimulators of frameshifting. It is detected with other X XXA AAG sequences, but not with several other heptameric -1 shift sites. Pairing of E. coli tRNALYS with AAG is especially weak at the third codon position. We propose that strong stacking of purines 3' of AAG stabilizes pairing of tRNALys, diminishing the chance of codon:anticodon dissociation that is a prerequisite for the realignment involved in frameshifting.

Full Text

The Full Text of this article is available as a PDF (802.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Guenther R., Ingram P. C., Basti M. M., Stuart J. W., Sochacka E., Malkiewicz A. Unconventional structure of tRNA(Lys)SUU anticodon explains tRNA's role in bacterial and mammalian ribosomal frameshifting and primer selection by HIV-1. RNA. 1997 Apr;3(4):420–428. [PMC free article] [PubMed] [Google Scholar]
  2. Ayer D., Yarus M. The context effect does not require a fourth base pair. Science. 1986 Jan 24;231(4736):393–395. doi: 10.1126/science.3510456. [DOI] [PubMed] [Google Scholar]
  3. Bonekamp F., Dalbøge H., Christensen T., Jensen K. F. Translation rates of individual codons are not correlated with tRNA abundances or with frequencies of utilization in Escherichia coli. J Bacteriol. 1989 Nov;171(11):5812–5816. doi: 10.1128/jb.171.11.5812-5816.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bossi L. Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol. 1983 Feb 15;164(1):73–87. doi: 10.1016/0022-2836(83)90088-8. [DOI] [PubMed] [Google Scholar]
  5. Bourdeau V., Steinberg S. V., Ferbeyre G., Emond R., Cermakian N., Cedergren R. Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1375–1380. doi: 10.1073/pnas.95.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brierley I., Digard P., Inglis S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brierley I., Jenner A. J., Inglis S. C. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1992 Sep 20;227(2):463–479. doi: 10.1016/0022-2836(92)90901-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brierley I., Meredith M. R., Bloys A. J., Hagervall T. G. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J Mol Biol. 1997 Jul 18;270(3):360–373. doi: 10.1006/jmbi.1997.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buckingham R. H. Codon context and protein synthesis: enhancements of the genetic code. Biochimie. 1994;76(5):351–354. doi: 10.1016/0300-9084(94)90108-2. [DOI] [PubMed] [Google Scholar]
  10. Bénas P., Bec G., Keith G., Marquet R., Ehresmann C., Ehresmann B., Dumas P. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA. 2000 Oct;6(10):1347–1355. doi: 10.1017/s1355838200000911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carlson B. A., Mushinski J. F., Henderson D. W., Kwon S. Y., Crain P. F., Lee B. J., Hatfield D. L. 1-Methylguanosine in place of Y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting. Virology. 2001 Jan 5;279(1):130–135. doi: 10.1006/viro.2000.0692. [DOI] [PubMed] [Google Scholar]
  12. Chandler M., Fayet O. Translational frameshifting in the control of transposition in bacteria. Mol Microbiol. 1993 Feb;7(4):497–503. doi: 10.1111/j.1365-2958.1993.tb01140.x. [DOI] [PubMed] [Google Scholar]
  13. Curran J. F., Poole E. S., Tate W. P., Gross B. L. Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. Nucleic Acids Res. 1995 Oct 25;23(20):4104–4108. doi: 10.1093/nar/23.20.4104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dong H., Nilsson L., Kurland C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol. 1996 Aug 2;260(5):649–663. doi: 10.1006/jmbi.1996.0428. [DOI] [PubMed] [Google Scholar]
  15. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gramstat A., Prüfer D., Rohde W. The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a shifty stop codon and a novel mechanism of P-site slippage. Nucleic Acids Res. 1994 Sep 25;22(19):3911–3917. doi: 10.1093/nar/22.19.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horsfield J. A., Wilson D. N., Mannering S. A., Adamski F. M., Tate W. P. Prokaryotic ribosomes recode the HIV-1 gag-pol-1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism. Nucleic Acids Res. 1995 May 11;23(9):1487–1494. doi: 10.1093/nar/23.9.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inokuchi H., Yamao F., Sakano H., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln. J Mol Biol. 1979 Aug 25;132(4):649–662. doi: 10.1016/0022-2836(79)90380-2. [DOI] [PubMed] [Google Scholar]
  19. Irwin B., Heck J. D., Hatfield G. W. Codon pair utilization biases influence translational elongation step times. J Biol Chem. 1995 Sep 29;270(39):22801–22806. doi: 10.1074/jbc.270.39.22801. [DOI] [PubMed] [Google Scholar]
  20. Jacks T., Madhani H. D., Masiarz F. R., Varmus H. E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988 Nov 4;55(3):447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim Y. G., Maas S., Rich A. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2. Nucleic Acids Res. 2001 Mar 1;29(5):1125–1131. doi: 10.1093/nar/29.5.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kolla V., Chakravorty M., Pandey B., Srinivasula S. M., Mukherjee A., Litwack G. Synthesis of a bacteriophage MB78 late protein by novel ribosomal frameshifting. Gene. 2000 Aug 22;254(1-2):209–217. doi: 10.1016/S0378-1119(00)00264-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kropinski A. M., Farinha M. A., Jansons I. Nucleotide sequence of the Pseudomonas aeruginosa insertion sequence IS222: another member of the IS3 family. Plasmid. 1994 Mar;31(2):222–228. doi: 10.1006/plas.1994.1024. [DOI] [PubMed] [Google Scholar]
  24. Larsen B., Gesteland R. F., Atkins J. F. Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%. J Mol Biol. 1997 Aug 8;271(1):47–60. doi: 10.1006/jmbi.1997.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Larsen B., Wills N. M., Gesteland R. F., Atkins J. F. rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift. J Bacteriol. 1994 Nov;176(22):6842–6851. doi: 10.1128/jb.176.22.6842-6851.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li G., Rice C. M. The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol. 1993 Aug;67(8):5062–5067. doi: 10.1128/jvi.67.8.5062-5067.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Looman A. C., Bodlaender J., Comstock L. J., Eaton D., Jhurani P., de Boer H. A., van Knippenberg P. H. Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli. EMBO J. 1987 Aug;6(8):2489–2492. doi: 10.1002/j.1460-2075.1987.tb02530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lutz R., Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997 Mar 15;25(6):1203–1210. doi: 10.1093/nar/25.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Major L. L., Poole E. S., Dalphin M. E., Mannering S. A., Tate W. P. Is the in-frame termination signal of the Escherichia coli release factor-2 frameshift site weakened by a particularly poor context? Nucleic Acids Res. 1996 Jul 15;24(14):2673–2678. doi: 10.1093/nar/24.14.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mayer M. P. A new set of useful cloning and expression vectors derived from pBlueScript. Gene. 1995 Sep 22;163(1):41–46. doi: 10.1016/0378-1119(95)00389-n. [DOI] [PubMed] [Google Scholar]
  31. Mejlhede N., Atkins J. F., Neuhard J. Ribosomal -1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG. J Bacteriol. 1999 May;181(9):2930–2937. doi: 10.1128/jb.181.9.2930-2937.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller J. H., Albertini A. M. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983 Feb 15;164(1):59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  33. Moore B., Persson B. C., Nelson C. C., Gesteland R. F., Atkins J. F. Quadruplet codons: implications for code expansion and the specification of translation step size. J Mol Biol. 2000 Apr 28;298(2):195–209. doi: 10.1006/jmbi.2000.3658. [DOI] [PubMed] [Google Scholar]
  34. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Normanly J., Ogden R. C., Horvath S. J., Abelson J. Changing the identity of a transfer RNA. Nature. 1986 May 15;321(6067):213–219. doi: 10.1038/321213a0. [DOI] [PubMed] [Google Scholar]
  36. Pande S., Vimaladithan A., Zhao H., Farabaugh P. J. Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Mol Cell Biol. 1995 Jan;15(1):298–304. doi: 10.1128/mcb.15.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Paul C. P., Barry J. K., Dinesh-Kumar S. P., Brault V., Miller W. A. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J Mol Biol. 2001 Jul 27;310(5):987–999. doi: 10.1006/jmbi.2001.4801. [DOI] [PubMed] [Google Scholar]
  38. Pavlov M. Y., Freistroffer D. V., Dincbas V., MacDougall J., Buckingham R. H., Ehrenberg M. A direct estimation of the context effect on the efficiency of termination. J Mol Biol. 1998 Dec 4;284(3):579–590. doi: 10.1006/jmbi.1998.2220. [DOI] [PubMed] [Google Scholar]
  39. Pedersen W. T., Curran J. F. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J Mol Biol. 1991 May 20;219(2):231–241. doi: 10.1016/0022-2836(91)90564-m. [DOI] [PubMed] [Google Scholar]
  40. Polard P., Prère M. F., Chandler M., Fayet O. Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J Mol Biol. 1991 Dec 5;222(3):465–477. doi: 10.1016/0022-2836(91)90490-w. [DOI] [PubMed] [Google Scholar]
  41. Poole E. S., Brown C. M., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. doi: 10.1002/j.1460-2075.1995.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rettberg C. C., Prère M. F., Gesteland R. F., Atkins J. F., Fayet O. A three-way junction and constituent stem-loops as the stimulator for programmed -1 frameshifting in bacterial insertion sequence IS911. J Mol Biol. 1999 Mar 12;286(5):1365–1378. doi: 10.1006/jmbi.1999.2546. [DOI] [PubMed] [Google Scholar]
  43. Sekine Y., Ohtsubo E. DNA sequences required for translational frameshifting in production of the transposase encoded by IS1. Mol Gen Genet. 1992 Nov;235(2-3):325–332. doi: 10.1007/BF00279377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Skuzeski J. M., Nichols L. M., Gesteland R. F., Atkins J. F. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol. 1991 Mar 20;218(2):365–373. doi: 10.1016/0022-2836(91)90718-l. [DOI] [PubMed] [Google Scholar]
  45. Stormo G. D., Schneider T. D., Gold L. Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res. 1986 Aug 26;14(16):6661–6679. doi: 10.1093/nar/14.16.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sundaram M., Durant P. C., Davis D. R. Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical U-turn structure. Biochemistry. 2000 Oct 17;39(41):12575–12584. doi: 10.1021/bi0014655. [DOI] [PubMed] [Google Scholar]
  47. Tate W. P., Mannering S. A. Three, four or more: the translational stop signal at length. Mol Microbiol. 1996 Jul;21(2):213–219. doi: 10.1046/j.1365-2958.1996.6391352.x. [DOI] [PubMed] [Google Scholar]
  48. Tsuchihashi Z., Brown P. O. Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. Genes Dev. 1992 Mar;6(3):511–519. doi: 10.1101/gad.6.3.511. [DOI] [PubMed] [Google Scholar]
  49. Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]
  50. Weiss R. B., Dunn D. M., Atkins J. F., Gesteland R. F. Ribosomal frameshifting from -2 to +50 nucleotides. Prog Nucleic Acid Res Mol Biol. 1990;39:159–183. doi: 10.1016/s0079-6603(08)60626-1. [DOI] [PubMed] [Google Scholar]
  51. Weiss R. B., Dunn D. M., Dahlberg A. E., Atkins J. F., Gesteland R. F. Reading frame switch caused by base-pair formation between the 3' end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988 May;7(5):1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Weiss R. B., Dunn D. M., Shuh M., Atkins J. F., Gesteland R. F. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biol. 1989 Nov;1(2):159–169. [PubMed] [Google Scholar]
  53. Wills N. M., Gesteland R. F., Atkins J. F. Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. 1994 Sep 1;13(17):4137–4144. doi: 10.1002/j.1460-2075.1994.tb06731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yusupova G. Z., Yusupov M. M., Cate J. H., Noller H. F. The path of messenger RNA through the ribosome. Cell. 2001 Jul 27;106(2):233–241. doi: 10.1016/s0092-8674(01)00435-4. [DOI] [PubMed] [Google Scholar]
  55. ten Dam E. B., Pleij C. W., Bosch L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes. 1990 Jul;4(2):121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES