Skip to main content
RNA logoLink to RNA
. 2002 Jan;8(1):110–122. doi: 10.1017/s1355838202012074

The Brome mosaic virus subgenomic promoter hairpin is structurally similar to the iron-responsive element and functionally equivalent to the minus-strand core promoter stem-loop C.

P C Joost Haasnoot 1, René C L Olsthoorn 1, John F Bol 1
PMCID: PMC1370233  PMID: 11873757

Abstract

In the Bromoviridae family of plant viruses, trinucleotide hairpin loops play an important role in RNA transcription. Recently, we reported that Brome mosaic virus (BMV) subgenomic (sg) transcription depended on the formation of an unusual triloop hairpin. By native gel electrophoresis, enzymatic structure probing, and NMR spectroscopy it is shown here that in the absence of viral replicase the hexanucleotide loop 5'C1AUAG5A3' of this RNA structure can adopt a pseudo trinucleotide loop conformation by transloop base pairing between C1 and G5. By means of in vitro replication assays using partially purified BMV RNA-dependent RNA polymerase (RdRp) it was found that other base pairs contribute to sg transcription, probably by stabilizing the formation of this pseudo triloop, which is proposed to be the primary element recognized by the viral replicase. The BMV pseudo triloop structure strongly resembles iron-responsive elements (IREs) in cellular messenger RNAs and may represent a general protein-binding motif. In addition, in vitro replication assays showed that the BMV sg hairpin is functionally equivalent to the minus-strand core promoter hairpin stem-loop C at the 3' end of BMV RNAs. Replacement of the sg hairpin by stem-loop C yielded increased sg promoter activity whereas replacement of stem-loop C by the sg hairpin resulted in reduced minus-strand promoter activity. We conclude that AUA triloops represent the common motif in the BMV sg and minus-strand promoters required for recruitment of the viral replicase. Additional sequence elements of the minus-strand promoter are proposed to direct the RdRp to the initiation site at the 3' end of the genomic RNA.

Full Text

The Full Text of this article is available as a PDF (470.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addess K. J., Basilion J. P., Klausner R. D., Rouault T. A., Pardi A. Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory binding proteins. J Mol Biol. 1997 Nov 21;274(1):72–83. doi: 10.1006/jmbi.1997.1377. [DOI] [PubMed] [Google Scholar]
  2. Adkins S., Siegel R. W., Sun J. H., Kao C. C. Minimal templates directing accurate initiation of subgenomic RNA synthesis in vitro by the brome mosaic virus RNA-dependent RNA polymerase. RNA. 1997 Jun;3(6):634–647. [PMC free article] [PubMed] [Google Scholar]
  3. Bol J. F. Alfalfa mosaic virus and ilarviruses: involvement of coat protein in multiple steps of the replication cycle. J Gen Virol. 1999 May;80(Pt 5):1089–1102. doi: 10.1099/0022-1317-80-5-1089. [DOI] [PubMed] [Google Scholar]
  4. Buck K. W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res. 1996;47:159–251. doi: 10.1016/S0065-3527(08)60736-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenter C. D., Simon A. E. Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection. Nucleic Acids Res. 1998 May 15;26(10):2426–2432. doi: 10.1093/nar/26.10.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman M. R., Kao C. C. A minimal RNA promoter for minus-strand RNA synthesis by the brome mosaic virus polymerase complex. J Mol Biol. 1999 Feb 26;286(3):709–720. doi: 10.1006/jmbi.1998.2503. [DOI] [PubMed] [Google Scholar]
  7. Chen M. H., Roossinck M. J., Kao C. C. Efficient and specific initiation of subgenomic RNA synthesis by cucumber mosaic virus replicase in vitro requires an upstream RNA stem-loop. J Virol. 2000 Dec;74(23):11201–11209. doi: 10.1128/jvi.74.23.11201-11209.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colvin R. A., Garcia-Blanco M. A. Unusual structure of the human immunodeficiency virus type 1 trans-activation response element. J Virol. 1992 Feb;66(2):930–935. doi: 10.1128/jvi.66.2.930-935.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Colvin R. A., White S. W., Garcia-Blanco M. A., Hoffman D. W. Structural features of an RNA containing the CUGGGA loop of the human immunodeficiency virus type 1 trans-activation response element. Biochemistry. 1993 Feb 2;32(4):1105–1112. doi: 10.1021/bi00055a016. [DOI] [PubMed] [Google Scholar]
  10. Critchley A. D., Haneef I., Cousens D. J., Stockley P. G. Modeling and solution structure probing of the HIV-1 TAR stem-loop. J Mol Graph. 1993 Jun;11(2):92-7, 124. doi: 10.1016/0263-7855(93)87002-m. [DOI] [PubMed] [Google Scholar]
  11. Dale T., Smith R., Serra M. J. A test of the model to predict unusually stable RNA hairpin loop stability. RNA. 2000 Apr;6(4):608–615. doi: 10.1017/s1355838200992495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dreher T. W., Hall T. C. Mutational analysis of the tRNA mimicry of brome mosaic virus RNA. Sequence and structural requirements for aminoacylation and 3'-adenylation. J Mol Biol. 1988 May 5;201(1):41–55. doi: 10.1016/0022-2836(88)90437-8. [DOI] [PubMed] [Google Scholar]
  13. Dreher Theo W. FUNCTIONS OF THE 3'-UNTRANSLATED REGIONS OF POSITIVE STRAND RNA VIRAL GENOMES. Annu Rev Phytopathol. 1999;37(NaN):151–174. doi: 10.1146/annurev.phyto.37.1.151. [DOI] [PubMed] [Google Scholar]
  14. Felden B., Florentz C., Giegé R., Westhof E. Solution structure of the 3'-end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs. J Mol Biol. 1994 Jan 14;235(2):508–531. doi: 10.1006/jmbi.1994.1010. [DOI] [PubMed] [Google Scholar]
  15. French R., Ahlquist P. Characterization and engineering of sequences controlling in vivo synthesis of brome mosaic virus subgenomic RNA. J Virol. 1988 Jul;62(7):2411–2420. doi: 10.1128/jvi.62.7.2411-2420.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. French R., Ahlquist P. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J Virol. 1987 May;61(5):1457–1465. doi: 10.1128/jvi.61.5.1457-1465.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garber M. E., Wei P., KewalRamani V. N., Mayall T. P., Herrmann C. H., Rice A. P., Littman D. R., Jones K. A. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 1998 Nov 15;12(22):3512–3527. doi: 10.1101/gad.12.22.3512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haasnoot P. C., Brederode F. T., Olsthoorn R. C., Bol J. F. A conserved hairpin structure in Alfamovirus and Bromovirus subgenomic promoters is required for efficient RNA synthesis in vitro. RNA. 2000 May;6(5):708–716. doi: 10.1017/s1355838200992471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harrell C. M., McKenzie A. R., Patino M. M., Walden W. E., Theil E. C. Ferritin mRNA: interactions of iron regulatory element with translational regulator protein P-90 and the effect on base-paired flanking regions. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4166–4170. doi: 10.1073/pnas.88.10.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henderson B. R., Menotti E., Bonnard C., Kühn L. C. Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. J Biol Chem. 1994 Jul 1;269(26):17481–17489. [PubMed] [Google Scholar]
  21. Jaeger J. A., Tinoco I., Jr An NMR study of the HIV-1 TAR element hairpin. Biochemistry. 1993 Nov 23;32(46):12522–12530. doi: 10.1021/bi00097a032. [DOI] [PubMed] [Google Scholar]
  22. Jaffrey S. R., Haile D. J., Klausner R. D., Harford J. B. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure. Nucleic Acids Res. 1993 Sep 25;21(19):4627–4631. doi: 10.1093/nar/21.19.4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jaspars E. M. A core promoter hairpin is essential for subgenomic RNA synthesis in alfalfa mosaic alfamovirus and is conserved in other Bromoviridae. Virus Genes. 1998;17(3):233–242. doi: 10.1023/a:1008065704102. [DOI] [PubMed] [Google Scholar]
  24. Ke Y., Sierzputowska-Gracz H., Gdaniec Z., Theil E. C. Internal loop/bulge and hairpin loop of the iron-responsive element of ferritin mRNA contribute to maximal iron regulatory protein 2 binding and translational regulation in the iso-iron-responsive element/iso-iron regulatory protein family. Biochemistry. 2000 May 23;39(20):6235–6242. doi: 10.1021/bi9924765. [DOI] [PubMed] [Google Scholar]
  25. Ke Y., Wu J., Leibold E. A., Walden W. E., Theil E. C. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? J Biol Chem. 1998 Sep 11;273(37):23637–23640. doi: 10.1074/jbc.273.37.23637. [DOI] [PubMed] [Google Scholar]
  26. Kim C. H., Kao C. C., Tinoco I., Jr RNA motifs that determine specificity between a viral replicase and its promoter. Nat Struct Biol. 2000 May;7(5):415–423. doi: 10.1038/75202. [DOI] [PubMed] [Google Scholar]
  27. Kim C. H., Tinoco I., Jr Structural and thermodynamic studies on mutant RNA motifs that impair the specificity between a viral replicase and its promoter. J Mol Biol. 2001 Mar 30;307(3):827–839. doi: 10.1006/jmbi.2001.4497. [DOI] [PubMed] [Google Scholar]
  28. Klausner R. D., Rouault T. A., Harford J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 Jan 15;72(1):19–28. doi: 10.1016/0092-8674(93)90046-s. [DOI] [PubMed] [Google Scholar]
  29. Klinck R., Westhof E., Walker S., Afshar M., Collier A., Aboul-Ela F. A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. RNA. 2000 Oct;6(10):1423–1431. doi: 10.1017/s1355838200000935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Knaus T., Nassal M. The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function. Nucleic Acids Res. 1993 Aug 25;21(17):3967–3975. doi: 10.1093/nar/21.17.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lai M. M., Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Laing L. G., Hall K. B. A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. Biochemistry. 1996 Oct 22;35(42):13586–13596. doi: 10.1021/bi961310q. [DOI] [PubMed] [Google Scholar]
  33. Long K. S., Crothers D. M. Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA. Biochemistry. 1999 Aug 3;38(31):10059–10069. doi: 10.1021/bi990590h. [DOI] [PubMed] [Google Scholar]
  34. Lukavsky P. J., Otto G. A., Lancaster A. M., Sarnow P., Puglisi J. D. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol. 2000 Dec;7(12):1105–1110. doi: 10.1038/81951. [DOI] [PubMed] [Google Scholar]
  35. Marsh L. E., Dreher T. W., Hall T. C. Mutational analysis of the core and modulator sequences of the BMV RNA3 subgenomic promoter. Nucleic Acids Res. 1988 Feb 11;16(3):981–995. doi: 10.1093/nar/16.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Miller W. A., Dreher T. W., Hall T. C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA. Nature. 1985 Jan 3;313(5997):68–70. doi: 10.1038/313068a0. [DOI] [PubMed] [Google Scholar]
  37. Nassal M., Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virol. 1996 May;70(5):2764–2773. doi: 10.1128/jvi.70.5.2764-2773.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. O'Reilly E. K., Kao C. C. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology. 1998 Dec 20;252(2):287–303. doi: 10.1006/viro.1998.9463. [DOI] [PubMed] [Google Scholar]
  39. Odreman-Macchioli F. E., Tisminetzky S. G., Zotti M., Baralle F. E., Buratti E. Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES. Nucleic Acids Res. 2000 Feb 15;28(4):875–885. doi: 10.1093/nar/28.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Oh J. W., Sheu G. T., Lai M. M. Template requirement and initiation site selection by hepatitis C virus polymerase on a minimal viral RNA template. J Biol Chem. 2000 Jun 9;275(23):17710–17717. doi: 10.1074/jbc.M908781199. [DOI] [PubMed] [Google Scholar]
  41. Olsthoorn R. C., Mertens S., Brederode F. T., Bol J. F. A conformational switch at the 3' end of a plant virus RNA regulates viral replication. EMBO J. 1999 Sep 1;18(17):4856–4864. doi: 10.1093/emboj/18.17.4856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Park J., Mergia A. Mutational analysis of the 5' leader region of simian foamy virus type 1. Virology. 2000 Aug 15;274(1):203–212. doi: 10.1006/viro.2000.0423. [DOI] [PubMed] [Google Scholar]
  43. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  44. Pollack J. R., Ganem D. An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J Virol. 1993 Jun;67(6):3254–3263. doi: 10.1128/jvi.67.6.3254-3263.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rao A. L., Hall T. C. Recombination and polymerase error facilitate restoration of infectivity in brome mosaic virus. J Virol. 1993 Feb;67(2):969–979. doi: 10.1128/jvi.67.2.969-979.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sawicki S. G., Sawicki D. L. A new model for coronavirus transcription. Adv Exp Med Biol. 1998;440:215–219. doi: 10.1007/978-1-4615-5331-1_26. [DOI] [PubMed] [Google Scholar]
  47. Siegel R. W., Adkins S., Kao C. C. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11238–11243. doi: 10.1073/pnas.94.21.11238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sierzputowska-Gracz H., McKenzie R. A., Theil E. C. The importance of a single G in the hairpin loop of the iron responsive element (IRE) in ferritin mRNA for structure: an NMR spectroscopy study. Nucleic Acids Res. 1995 Jan 11;23(1):146–153. doi: 10.1093/nar/23.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sit T. L., Vaewhongs A. A., Lommel S. A. RNA-mediated trans-activation of transcription from a viral RNA. Science. 1998 Aug 7;281(5378):829–832. doi: 10.1126/science.281.5378.829. [DOI] [PubMed] [Google Scholar]
  50. Sivakumaran K., Bao Y., Roossinck M. J., Kao C. C. Recognition of the core RNA promoter for minus-strand RNA synthesis by the replicases of Brome mosaic virus and Cucumber mosaic virus. J Virol. 2000 Nov;74(22):10323–10331. doi: 10.1128/jvi.74.22.10323-10331.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Smirnyagina E., Hsu Y. H., Chua N., Ahlquist P. Second-site mutations in the brome mosaic virus RNA3 intercistronic region partially suppress a defect in coat protein mRNA transcription. Virology. 1994 Feb;198(2):427–436. doi: 10.1006/viro.1994.1054. [DOI] [PubMed] [Google Scholar]
  52. Stawicki S. S., Kao C. C. Spatial perturbations within an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase (RdRp) reveal that RdRp can adjust its promoter binding sites. J Virol. 1999 Jan;73(1):198–204. doi: 10.1128/jvi.73.1.198-204.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tanaka Y., Shimoike T., Ishii K., Suzuki R., Suzuki T., Ushijima H., Matsuura Y., Miyamura T. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5' untranslated region of the viral genome. Virology. 2000 Apr 25;270(1):229–236. doi: 10.1006/viro.2000.0252. [DOI] [PubMed] [Google Scholar]
  54. Tavis J. E., Perri S., Ganem D. Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer. J Virol. 1994 Jun;68(6):3536–3543. doi: 10.1128/jvi.68.6.3536-3543.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Theil E. C., Eisenstein R. S. Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs). J Biol Chem. 2000 Dec 29;275(52):40659–40662. doi: 10.1074/jbc.R000019200. [DOI] [PubMed] [Google Scholar]
  56. Tsai C. H., Cheng C. P., Peng C. W., Lin B. Y., Lin N. S., Hsu Y. H. Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA. J Virol. 1999 Apr;73(4):2703–2709. doi: 10.1128/jvi.73.4.2703-2709.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wang J., Bakkers J. M., Galama J. M., Bruins Slot H. J., Pilipenko E. V., Agol V. I., Melchers W. J. Structural requirements of the higher order RNA kissing element in the enteroviral 3'UTR. Nucleic Acids Res. 1999 Jan 15;27(2):485–490. doi: 10.1093/nar/27.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wang J., Simon A. E. Analysis of the two subgenomic RNA promoters for turnip crinkle virus in vivo and in vitro. Virology. 1997 May 26;232(1):174–186. doi: 10.1006/viro.1997.8550. [DOI] [PubMed] [Google Scholar]
  59. Wang Y. H., Sczekan S. R., Theil E. C. Structure of the 5' untranslated regulatory region of ferritin mRNA studied in solution. Nucleic Acids Res. 1990 Aug 11;18(15):4463–4468. doi: 10.1093/nar/18.15.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell. 1998 Feb 20;92(4):451–462. doi: 10.1016/s0092-8674(00)80939-3. [DOI] [PubMed] [Google Scholar]
  61. Zhang J., Tamilarasu N., Hwang S., Garber M. E., Huq I., Jones K. A., Rana T. M. HIV-1 TAR RNA enhances the interaction between Tat and cyclin T1. J Biol Chem. 2000 Nov 3;275(44):34314–34319. doi: 10.1074/jbc.M006804200. [DOI] [PubMed] [Google Scholar]
  62. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J., Snijder E. J. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12056–12061. doi: 10.1073/pnas.96.21.12056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. van der Kuyl A. C., Langereis K., Houwing C. J., Jaspars E. M., Bol J. F. cis-acting elements involved in replication of alfalfa mosaic virus RNAs in vitro. Virology. 1990 Jun;176(2):346–354. doi: 10.1016/0042-6822(90)90004-b. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES