Skip to main content
RNA logoLink to RNA
. 2002 Jan;8(1):8–15. doi: 10.1017/s1355838202010981

Structural and functional properties of the HIV-1 RNA-tRNA(Lys)3 primer complex annealed by the nucleocapsid protein: comparison with the heat-annealed complex.

Fabienne Brulé 1, Roland Marquet 1, Liwei Rong 1, Mark A Wainberg 1, Bernard P Roques 1, Stuart F J Le Grice 1, Bernard Ehresmann 1, Chantal Ehresmann 1
PMCID: PMC1370235  PMID: 11873759

Abstract

The conversion of the single-stranded RNA genome into double-stranded DNA by virus-coded reverse transcriptase (RT) is an essential step of the retrovirus life cycle. In human immunodeficiency virus type 1 (HIV-1), RT uses the cellular tRNA(Lys)3 to initiate the (-) strand DNA synthesis. Placement of the primer tRNA(Lys)3 involves binding of its 3'-terminal 18 nt to a complementary region of genomic RNA termed PBS. However, the PBS sequence is not the unique determinant of primer usage and additional contacts are important. This placement is believed to be achieved in vivo by the nucleocapsid domain of Gag or by the mature protein NCp. Up to now, structural information essentially arose from heat-annealed primer-template complexes (Isel et al., J Mol Biol, 1995, 247:236-250; Isel et al., EMBO J, 1999, 18:1038-1048). Here, we investigated the formation of the primer-template complex mediated by NCp and compared structural and functional properties of heat- and NCp-annealed complexes. We showed that both heat- and NCp-mediated procedures allow comparable high yields of annealing. Then, we investigated structural features of both kinds of complexes by enzymatic probing, and we compared their relative efficiency in (-) strong stop DNA synthesis. We did not find any significant differences between these complexes, suggesting that information derived from the heat-annealed complex can be transposed to the NCp-mediated complex and most likely to complexes formed in vivo.

Full Text

The Full Text of this article is available as a PDF (225.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barat C., Lullien V., Schatz O., Keith G., Nugeyre M. T., Grüninger-Leitch F., Barré-Sinoussi F., LeGrice S. F., Darlix J. L. HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J. 1989 Nov;8(11):3279–3285. doi: 10.1002/j.1460-2075.1989.tb08488.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baudin F., Marquet R., Isel C., Darlix J. L., Ehresmann B., Ehresmann C. Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. J Mol Biol. 1993 Jan 20;229(2):382–397. doi: 10.1006/jmbi.1993.1041. [DOI] [PubMed] [Google Scholar]
  3. Beerens N., Berkhout B. In vitro studies on tRNA annealing and reverse transcription with mutant HIV-1 RNA templates. J Biol Chem. 2000 May 19;275(20):15474–15481. doi: 10.1074/jbc.275.20.15474. [DOI] [PubMed] [Google Scholar]
  4. Beerens N., Klaver B., Berkhout B. A structured RNA motif is involved in correct placement of the tRNA(3)(Lys) primer onto the human immunodeficiency virus genome. J Virol. 2000 Mar;74(5):2227–2238. doi: 10.1128/jvi.74.5.2227-2238.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bénas P., Bec G., Keith G., Marquet R., Ehresmann C., Ehresmann B., Dumas P. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA. 2000 Oct;6(10):1347–1355. doi: 10.1017/s1355838200000911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cen S., Khorchid A., Gabor J., Rong L., Wainberg M. A., Kleiman L. Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1. J Virol. 2000 Nov;74(22):10796–10800. doi: 10.1128/jvi.74.22.10796-10800.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan B., Musier-Forsyth K. The nucleocapsid protein specifically anneals tRNALys-3 onto a noncomplementary primer binding site within the HIV-1 RNA genome in vitro. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13530–13535. doi: 10.1073/pnas.94.25.13530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan B., Weidemaier K., Yip W. T., Barbara P. F., Musier-Forsyth K. Intra-tRNA distance measurements for nucleocapsid proteindependent tRNA unwinding during priming of HIV reverse transcription. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):459–464. doi: 10.1073/pnas.96.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  10. Das A. T., Klaver B., Berkhout B. Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys). J Virol. 1995 May;69(5):3090–3097. doi: 10.1128/jvi.69.5.3090-3097.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Rocquigny H., Gabus C., Vincent A., Fournié-Zaluski M. C., Roques B., Darlix J. L. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6472–6476. doi: 10.1073/pnas.89.14.6472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feng Y. X., Campbell S., Harvin D., Ehresmann B., Ehresmann C., Rein A. The human immunodeficiency virus type 1 Gag polyprotein has nucleic acid chaperone activity: possible role in dimerization of genomic RNA and placement of tRNA on the primer binding site. J Virol. 1999 May;73(5):4251–4256. doi: 10.1128/jvi.73.5.4251-4256.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo J., Wu T., Anderson J., Kane B. F., Johnson D. G., Gorelick R. J., Henderson L. E., Levin J. G. Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol. 2000 Oct;74(19):8980–8988. doi: 10.1128/jvi.74.19.8980-8988.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995 Sep 8;270(36):20871–20874. doi: 10.1074/jbc.270.36.20871. [DOI] [PubMed] [Google Scholar]
  15. Huang Y., Khorchid A., Gabor J., Wang J., Li X., Darlix J. L., Wainberg M. A., Kleiman L. The role of nucleocapsid and U5 stem/A-rich loop sequences in tRNA(3Lys) genomic placement and initiation of reverse transcription in human immunodeficiency virus type 1. J Virol. 1998 May;72(5):3907–3915. doi: 10.1128/jvi.72.5.3907-3915.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang Y., Wang J., Shalom A., Li Z., Khorchid A., Wainberg M. A., Kleiman L. Primer tRNA3Lys on the viral genome exists in unextended and two-base extended forms within mature human immunodeficiency virus type 1. J Virol. 1997 Jan;71(1):726–728. doi: 10.1128/jvi.71.1.726-728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Isel C., Ehresmann C., Keith G., Ehresmann B., Marquet R. Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). J Mol Biol. 1995 Mar 24;247(2):236–250. doi: 10.1006/jmbi.1994.0136. [DOI] [PubMed] [Google Scholar]
  18. Isel C., Ehresmann C., Keith G., Ehresmann B., Marquet R. Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). J Mol Biol. 1995 Mar 24;247(2):236–250. doi: 10.1006/jmbi.1994.0136. [DOI] [PubMed] [Google Scholar]
  19. Isel C., Marquet R., Keith G., Ehresmann C., Ehresmann B. Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. J Biol Chem. 1993 Dec 5;268(34):25269–25272. [PubMed] [Google Scholar]
  20. Isel C., Westhof E., Massire C., Le Grice S. F., Ehresmann B., Ehresmann C., Marquet R. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J. 1999 Feb 15;18(4):1038–1048. doi: 10.1093/emboj/18.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kang S. M., Zhang Z., Morrow C. D. Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met). J Virol. 1997 Jan;71(1):207–217. doi: 10.1128/jvi.71.1.207-217.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kr zel A., Lesniak W., Jezowska-Bojczuk M., Mlynarz P., Brasuñ J., Kozlowski H., Bal W. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J Inorg Biochem. 2001 Mar;84(1-2):77–88. doi: 10.1016/s0162-0134(00)00212-9. [DOI] [PubMed] [Google Scholar]
  23. Lanchy J. M., Ehresmann C., Le Grice S. F., Ehresmann B., Marquet R. Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. EMBO J. 1996 Dec 16;15(24):7178–7187. [PMC free article] [PubMed] [Google Scholar]
  24. Le Grice S. F., Grüninger-Leitch F. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur J Biochem. 1990 Jan 26;187(2):307–314. doi: 10.1111/j.1432-1033.1990.tb15306.x. [DOI] [PubMed] [Google Scholar]
  25. Li X., Mak J., Arts E. J., Gu Z., Kleiman L., Wainberg M. A., Parniak M. A. Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication. J Virol. 1994 Oct;68(10):6198–6206. doi: 10.1128/jvi.68.10.6198-6206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liang C., Li X., Rong L., Inouye P., Quan Y., Kleiman L., Wainberg M. A. The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity. J Virol. 1997 Aug;71(8):5750–5757. doi: 10.1128/jvi.71.8.5750-5757.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mak J., Jiang M., Wainberg M. A., Hammarskjöld M. L., Rekosh D., Kleiman L. Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J Virol. 1994 Apr;68(4):2065–2072. doi: 10.1128/jvi.68.4.2065-2072.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marquet R., Baudin F., Gabus C., Darlix J. L., Mougel M., Ehresmann C., Ehresmann B. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res. 1991 May 11;19(9):2349–2357. doi: 10.1093/nar/19.9.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mely Y., Cornille F., Fournié-Zaluski M. C., Darlix J. L., Roques B. P., Gérard D. Investigation of zinc-binding affinities of Moloney murine leukemia virus nucleocapsid protein and its related zinc finger and modified peptides. Biopolymers. 1991 Jun;31(7):899–906. doi: 10.1002/bip.360310709. [DOI] [PubMed] [Google Scholar]
  30. Rein A., Henderson L. E., Levin J. G. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci. 1998 Aug;23(8):297–301. doi: 10.1016/s0968-0004(98)01256-0. [DOI] [PubMed] [Google Scholar]
  31. Rong L., Liang C., Hsu M., Kleiman L., Petitjean P., de Rocquigny H., Roques B. P., Wainberg M. A. Roles of the human immunodeficiency virus type 1 nucleocapsid protein in annealing and initiation versus elongation in reverse transcription of viral negative-strand strong-stop DNA. J Virol. 1998 Nov;72(11):9353–9358. doi: 10.1128/jvi.72.11.9353-9358.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wakefield J. K., Kang S. M., Morrow C. D. Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His). J Virol. 1996 Feb;70(2):966–975. doi: 10.1128/jvi.70.2.966-975.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Williams M. C., Rouzina I., Wenner J. R., Gorelick R. J., Musier-Forsyth K., Bloomfield V. A. Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci U S A. 2001 May 8;98(11):6121–6126. doi: 10.1073/pnas.101033198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhang Z., Kang S. M., Li Y., Morrow C. D. Genetic analysis of the U5-PBS of a novel HIV-1 reveals multiple interactions between the tRNA and RNA genome required for initiation of reverse transcription. RNA. 1998 Apr;4(4):394–406. [PMC free article] [PubMed] [Google Scholar]
  35. de Rocquigny H., Ficheux D., Gabus C., Fournié-Zaluski M. C., Darlix J. L., Roques B. P. First large scale chemical synthesis of the 72 amino acid HIV-1 nucleocapsid protein NCp7 in an active form. Biochem Biophys Res Commun. 1991 Oct 31;180(2):1010–1018. doi: 10.1016/s0006-291x(05)81166-0. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES