Skip to main content
RNA logoLink to RNA
. 2002 Feb;8(2):129–136. doi: 10.1017/s1355838202013262

Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1.

Ludmila Frolova 1, Alim Seit-Nebi 1, Lev Kisselev 1
PMCID: PMC1370237  PMID: 11911360

Abstract

Class-1 polypeptide chain release factors (RFs) play a key role in translation termination. Eukaryotic (eRF1) and archaeal class-1 RFs possess a highly conserved Asn-Ile-Lys-Ser (NIKS) tetrapeptide located at the N-terminal domain of human eRF1. In the three-dimensional structure, NIKS forms a loop between helices. The universal occurrence and exposed nature of this motif provoke the appearance of hypotheses postulating an essential role of this tetrapeptide in stop codon recognition and ribosome binding. To approach this problem experimentally, site-directed mutagenesis of the NIKS (positions 61-64) in human eRF1 and adjacent amino acids has been applied followed by determination of release activity and ribosome-binding capacity of mutants. Substitutions of Asn61 and Ile62 residues of the NIKS cause a decrease in the ability of eRF1 mutants to promote termination reaction in vitro, but to a different extent depending on the stop codon specificity, position, and nature of the substituting residues. This observation points to a possibility that Asn-Ile dipeptide modulates the specific recognition of the stop codons by eRF1. Some replacements at positions 60, 63, and 64 cause a negligible (if any) effect in contrast to what has been deduced from some current hypotheses predicting the structure of the termination codon recognition site in eRF1. Reduction in ribosome binding revealed for Ile62, Ser64, Arg65, and Arg68 mutants argues in favor of the essential role played by the right part of the NIKS loop in interaction with the ribosome, most probably with ribosomal RNA.

Full Text

The Full Text of this article is available as a PDF (219.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkov A. L., Freistroffer D. V., Ehrenberg M., Murgola E. J. Mutations in RNAs of both ribosomal subunits cause defects in translation termination. EMBO J. 1998 Mar 2;17(5):1507–1514. doi: 10.1093/emboj/17.5.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertram G., Bell H. A., Ritchie D. W., Fullerton G., Stansfield I. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA. 2000 Sep;6(9):1236–1247. doi: 10.1017/s1355838200000777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carter A. P., Clemons W. M., Brodersen D. E., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000 Sep 21;407(6802):340–348. doi: 10.1038/35030019. [DOI] [PubMed] [Google Scholar]
  4. Caskey C. T., Beaudet A. L., Tate W. P. Mammalian release factor; in vitro assay and purification. Methods Enzymol. 1974;30:293–303. doi: 10.1016/0076-6879(74)30032-8. [DOI] [PubMed] [Google Scholar]
  5. Demeshkina N., Repkova M., Ven'yaminova A., Graifer D., Karpova G. Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P, and E sites: a crosslinking study with mRNA analogs carrying an aryl azide group at either the uracil or the guanine residue. RNA. 2000 Dec;6(12):1727–1736. doi: 10.1017/s1355838200000996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dontsova M., Frolova L., Vassilieva J., Piendl W., Kisselev L., Garber M. Translation termination factor aRF1 from the archaeon Methanococcus jannaschii is active with eukaryotic ribosomes. FEBS Lett. 2000 Apr 28;472(2-3):213–216. doi: 10.1016/s0014-5793(00)01466-6. [DOI] [PubMed] [Google Scholar]
  7. Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 1997 Jul 1;16(13):4126–4133. doi: 10.1093/emboj/16.13.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frolova L. Y., Merkulova T. I., Kisselev L. L. Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains. RNA. 2000 Mar;6(3):381–390. doi: 10.1017/s135583820099143x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frolova L. Y., Simonsen J. L., Merkulova T. I., Litvinov D. Y., Martensen P. M., Rechinsky V. O., Camonis J. H., Kisselev L. L., Justesen J. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur J Biochem. 1998 Aug 15;256(1):36–44. doi: 10.1046/j.1432-1327.1998.2560036.x. [DOI] [PubMed] [Google Scholar]
  10. Frolova L. Y., Tsivkovskii R. Y., Sivolobova G. F., Oparina N. Y., Serpinsky O. I., Blinov V. M., Tatkov S. I., Kisselev L. L. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 1999 Aug;5(8):1014–1020. doi: 10.1017/s135583829999043x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., Kisselev L. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 1996 Apr;2(4):334–341. [PMC free article] [PubMed] [Google Scholar]
  12. Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi: 10.1146/annurev.biochem.66.1.679. [DOI] [PubMed] [Google Scholar]
  13. Hoshino S., Miyazawa H., Enomoto T., Hanaoka F., Kikuchi Y., Kikuchi A., Ui M. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 1989 Dec 1;8(12):3807–3814. doi: 10.1002/j.1460-2075.1989.tb08558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inagaki Y., Doolittle W. F. Class I release factors in ciliates with variant genetic codes. Nucleic Acids Res. 2001 Feb 15;29(4):921–927. doi: 10.1093/nar/29.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ito K., Uno M., Nakamura Y. A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature. 2000 Feb 10;403(6770):680–684. doi: 10.1038/35001115. [DOI] [PubMed] [Google Scholar]
  16. Kervestin S., Frolova L., Kisselev L., Jean-Jean O. Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon. EMBO Rep. 2001 Jul 19;2(8):680–684. doi: 10.1093/embo-reports/kve156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kisselev L. L., Buckingham R. H. Translational termination comes of age. Trends Biochem Sci. 2000 Nov;25(11):561–566. doi: 10.1016/s0968-0004(00)01669-8. [DOI] [PubMed] [Google Scholar]
  18. Knight R. D., Landweber L. F. The early evolution of the genetic code. Cell. 2000 Jun 9;101(6):569–572. doi: 10.1016/s0092-8674(00)80866-1. [DOI] [PubMed] [Google Scholar]
  19. Merkulova T. I., Frolova L. Y., Lazar M., Camonis J., Kisselev L. L. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 1999 Jan 22;443(1):41–47. doi: 10.1016/s0014-5793(98)01669-x. [DOI] [PubMed] [Google Scholar]
  20. Mironova L. N., Zelenaia O. A., Ter-Avanesian M. D. Iaderno-mitokhondrial'nye vzaimodeistviia u drozhzhei: mitokhondrial'nye mutatsii, kompensiruiushchie dykhatel'nuiu nedostatochnost' mutantov sup1 i sup2. Genetika. 1986 Feb;22(2):200–208. [PubMed] [Google Scholar]
  21. Murgola E. J., Hijazi K. A., Göringer H. U., Dahlberg A. E. Mutant 16S ribosomal RNA: a codon-specific translational suppressor. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4162–4165. doi: 10.1073/pnas.85.12.4162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Connor M., Thomas C. L., Zimmermann R. A., Dahlberg A. E. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res. 1997 Mar 15;25(6):1185–1193. doi: 10.1093/nar/25.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ogle J. M., Brodersen D. E., Clemons W. M., Jr, Tarry M. J., Carter A. P., Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001 May 4;292(5518):897–902. doi: 10.1126/science.1060612. [DOI] [PubMed] [Google Scholar]
  24. Pagel F. T., Zhao S. Q., Hijazi K. A., Murgola E. J. Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16 S ribosomal RNA. J Mol Biol. 1997 Apr 18;267(5):1113–1123. doi: 10.1006/jmbi.1997.0943. [DOI] [PubMed] [Google Scholar]
  25. Pel H. J., Moffat J. G., Ito K., Nakamura Y., Tate W. P. Escherichia coli release factor 3: resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides. RNA. 1998 Jan;4(1):47–54. [PMC free article] [PubMed] [Google Scholar]
  26. Poole E., Tate W. Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta. 2000 Sep 7;1493(1-2):1–11. doi: 10.1016/s0167-4781(00)00162-7. [DOI] [PubMed] [Google Scholar]
  27. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  28. Seit Nebi A., Frolova L., Ivanova N., Poltaraus A., Kiselev L. Mutatsii ostatka glutamina v universal'nom tripeptide GGQ v faktore terminatsii eRF1 cheloveka ne vyzyvaiut polnoi utraty ego aktivnosti. Mol Biol (Mosk) 2000 Sep-Oct;34(5):899–900. [PubMed] [Google Scholar]
  29. Seit-Nebi A., Frolova L., Justesen J., Kisselev L. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res. 2001 Oct 1;29(19):3982–3987. doi: 10.1093/nar/29.19.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Song H., Mugnier P., Das A. K., Webb H. M., Evans D. R., Tuite M. F., Hemmings B. A., Barford D. The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000 Feb 4;100(3):311–321. doi: 10.1016/s0092-8674(00)80667-4. [DOI] [PubMed] [Google Scholar]
  31. Velichutina I. V., Hong J. Y., Mesecar A. D., Chernoff Y. O., Liebman S. W. Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. J Mol Biol. 2001 Jan 26;305(4):715–727. doi: 10.1006/jmbi.2000.4329. [DOI] [PubMed] [Google Scholar]
  32. Yusupov M. M., Yusupova G. Z., Baucom A., Lieberman K., Earnest T. N., Cate J. H., Noller H. F. Crystal structure of the ribosome at 5.5 A resolution. Science. 2001 Mar 29;292(5518):883–896. doi: 10.1126/science.1060089. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES