Skip to main content
RNA logoLink to RNA
. 2002 Feb;8(2):137–149. doi: 10.1017/s1355838202015029

Mutations in RRM4 uncouple the splicing repression and RNA-binding activities of polypyrimidine tract binding protein.

Haiying Liu 1, Wenqing Zhang 1, Robyn B Reed 1, Weiqun Liu 1, Paula J Grabowski 1
PMCID: PMC1370238  PMID: 11911361

Abstract

The polypyrimidine tract binding protein (PTB, or hnRNP I) contains four RNA-binding domains of the ribonucleoprotein fold type (RRMs 1, 2, 3, and 4), and mediates the negative regulation of alternative splicing through sequence-specific binding to intronic splicing repressor elements. To assess the roles of individual RRM domains in splicing repression, a neural-specific splicing extract was used to screen for loss-of-function mutations that fail to switch splicing from the neural to nonneural pathway. These results show that three RRMs are sufficient for wild-type RNA binding and splicing repression activity, provided that RRM4 is intact. Surprisingly, the deletion of RRM4, or as few as 12 RRM4 residues, effectively uncouples these functions. Such an uncoupling phenotype is unique to RRM4, and suggests a possible regulatory role for this domain either in mediating specific RNA contacts, and/or contacts with putative splicing corepressors. Evidence of a role for RRM4 in anchoring PTB binding adjacent to the branch site is shown by mobility shift and RNA footprinting assays.

Full Text

The Full Text of this article is available as a PDF (921.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashiya M., Grabowski P. J. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA. 1997 Sep;3(9):996–1015. [PMC free article] [PubMed] [Google Scholar]
  2. Belsham G. J., Sonenberg N. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev. 1996 Sep;60(3):499–511. doi: 10.1128/mr.60.3.499-511.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell. 2000 Oct 27;103(3):367–370. doi: 10.1016/s0092-8674(00)00128-8. [DOI] [PubMed] [Google Scholar]
  4. Carstens R. P., Wagner E. J., Garcia-Blanco M. A. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol. 2000 Oct;20(19):7388–7400. doi: 10.1128/mcb.20.19.7388-7400.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan R. C., Black D. L. The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream. Mol Cell Biol. 1997 Aug;17(8):4667–4676. doi: 10.1128/mcb.17.8.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chou M. Y., Underwood J. G., Nikolic J., Luu M. H., Black D. L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell. 2000 Jun;5(6):949–957. doi: 10.1016/s1097-2765(00)80260-9. [DOI] [PubMed] [Google Scholar]
  7. Conte M. R., Grüne T., Ghuman J., Kelly G., Ladas A., Matthews S., Curry S. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J. 2000 Jun 15;19(12):3132–3141. doi: 10.1093/emboj/19.12.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cote C. A., Gautreau D., Denegre J. M., Kress T. L., Terry N. A., Mowry K. L. A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol Cell. 1999 Sep;4(3):431–437. doi: 10.1016/s1097-2765(00)80345-7. [DOI] [PubMed] [Google Scholar]
  9. Ghetti A., Piñol-Roma S., Michael W. M., Morandi C., Dreyfuss G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992 Jul 25;20(14):3671–3678. doi: 10.1093/nar/20.14.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gontarek R. R., Gutshall L. L., Herold K. M., Tsai J., Sathe G. M., Mao J., Prescott C., Del Vecchio A. M. hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. Nucleic Acids Res. 1999 Mar 15;27(6):1457–1463. doi: 10.1093/nar/27.6.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gooding C., Roberts G. C., Smith C. W. Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon. RNA. 1998 Jan;4(1):85–100. [PMC free article] [PubMed] [Google Scholar]
  12. Grabowski P. J., Black D. L. Alternative RNA splicing in the nervous system. Prog Neurobiol. 2001 Oct;65(3):289–308. doi: 10.1016/s0301-0082(01)00007-7. [DOI] [PubMed] [Google Scholar]
  13. Hall K. B., Stump W. T. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res. 1992 Aug 25;20(16):4283–4290. doi: 10.1093/nar/20.16.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang S., Deerinck T. J., Ellisman M. H., Spector D. L. The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol. 1997 Jun 2;137(5):965–974. doi: 10.1083/jcb.137.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Irwin N., Baekelandt V., Goritchenko L., Benowitz L. I. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Nucleic Acids Res. 1997 Mar 15;25(6):1281–1288. doi: 10.1093/nar/25.6.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jankowsky E., Gross C. H., Shuman S., Pyle A. M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science. 2001 Jan 5;291(5501):121–125. doi: 10.1126/science.291.5501.121. [DOI] [PubMed] [Google Scholar]
  17. Jin W., McCutcheon I. E., Fuller G. N., Huang E. S., Cote G. J. Fibroblast growth factor receptor-1 alpha-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res. 2000 Mar 1;60(5):1221–1224. [PubMed] [Google Scholar]
  18. Konarska M. M. Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. Methods Enzymol. 1989;180:442–453. doi: 10.1016/0076-6879(89)80116-8. [DOI] [PubMed] [Google Scholar]
  19. Lilleväli K., Kulla A., Ord T. Comparative expression analysis of the genes encoding polypyrimidine tract binding protein (PTB) and its neural homologue (brPTB) in prenatal and postnatal mouse brain. Mech Dev. 2001 Mar;101(1-2):217–220. doi: 10.1016/s0925-4773(00)00566-9. [DOI] [PubMed] [Google Scholar]
  20. Lou H., Gagel R. F., Berget S. M. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 1996 Jan 15;10(2):208–219. doi: 10.1101/gad.10.2.208. [DOI] [PubMed] [Google Scholar]
  21. Lou H., Helfman D. M., Gagel R. F., Berget S. M. Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3'-terminal exon. Mol Cell Biol. 1999 Jan;19(1):78–85. doi: 10.1128/mcb.19.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Markovtsov V., Nikolic J. M., Goldman J. A., Turck C. W., Chou M. Y., Black D. L. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol. 2000 Oct;20(20):7463–7479. doi: 10.1128/mcb.20.20.7463-7479.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moreira A., Takagaki Y., Brackenridge S., Wollerton M., Manley J. L., Proudfoot N. J. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3' end formation by two distinct mechanisms. Genes Dev. 1998 Aug 15;12(16):2522–2534. doi: 10.1101/gad.12.16.2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mulligan G. J., Guo W., Wormsley S., Helfman D. M. Polypyrimidine tract binding protein interacts with sequences involved in alternative splicing of beta-tropomyosin pre-mRNA. J Biol Chem. 1992 Dec 15;267(35):25480–25487. [PubMed] [Google Scholar]
  25. Norton P. A. Polypyrimidine tract sequences direct selection of alternative branch sites and influence protein binding. Nucleic Acids Res. 1994 Sep 25;22(19):3854–3860. doi: 10.1093/nar/22.19.3854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oh Y. L., Hahm B., Kim Y. K., Lee H. K., Lee J. W., Song O., Tsukiyama-Kohara K., Kohara M., Nomoto A., Jang S. K. Determination of functional domains in polypyrimidine-tract-binding protein. Biochem J. 1998 Apr 1;331(Pt 1):169–175. doi: 10.1042/bj3310169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Polydorides A. D., Okano H. J., Yang Y. Y., Stefani G., Darnell R. B. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6350–6355. doi: 10.1073/pnas.110128397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pérez I., Lin C. H., McAfee J. G., Patton J. G. Mutation of PTB binding sites causes misregulation of alternative 3' splice site selection in vivo. RNA. 1997 Jul;3(7):764–778. [PMC free article] [PubMed] [Google Scholar]
  29. Pérez I., McAfee J. G., Patton J. G. Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry. 1997 Sep 30;36(39):11881–11890. doi: 10.1021/bi9711745. [DOI] [PubMed] [Google Scholar]
  30. Singh R., Valcárcel J., Green M. R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science. 1995 May 26;268(5214):1173–1176. doi: 10.1126/science.7761834. [DOI] [PubMed] [Google Scholar]
  31. Southby J., Gooding C., Smith C. W. Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of alpha-actinin mutally exclusive exons. Mol Cell Biol. 1999 Apr;19(4):2699–2711. doi: 10.1128/mcb.19.4.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wagner E. J., Carstens R. P., Garcia-Blanco M. A. A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis. 1999 Apr-May;20(4-5):1082–1086. doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<1082::AID-ELPS1082>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  33. Wollerton M. C., Gooding C., Robinson F., Brown E. C., Jackson R. J., Smith C. W. Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA. 2001 Jun;7(6):819–832. doi: 10.1017/s1355838201010214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamamoto H., Tsukahara K., Kanaoka Y., Jinno S., Okayama H. Isolation of a mammalian homologue of a fission yeast differentiation regulator. Mol Cell Biol. 1999 May;19(5):3829–3841. doi: 10.1128/mcb.19.5.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhang L., Liu W., Grabowski P. J. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA. 1999 Jan;5(1):117–130. doi: 10.1017/s1355838299981530. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES