Skip to main content
RNA logoLink to RNA
. 2002 Feb;8(2):214–228. doi: 10.1017/s1355838202014723

Selection, design, and characterization of a new potentially therapeutic ribozyme.

Shawn P Zinnen 1, Kristal Domenico 1, Mike Wilson 1, Brent A Dickinson 1, Amber Beaudry 1, Victor Mokler 1, Andrew T Daniher 1, Alex Burgin 1, Leonid Beigelman 1
PMCID: PMC1370244  PMID: 11911367

Abstract

An in vitro selection was designed to identify RNA-cleaving ribozymes predisposed for function as a drug. The selection scheme required the catalyst to be trans-acting with phosphodiesterase activity targeting a fragment of the Kras mRNA under simulated physiological conditions. To increase stabilization against nucleases and to offer the potential for improved functionality, modified sequence space was sampled by transcribing with the following NTPs: 2'-F-ATP, 2'-F-UTP, or 2'-F-5-[(N-imidazole-4-acetyl) propylamine]-UTP, 2'-NH2-CTP, and GTP. Active motifs were identified and assessed for their modified NMP and divalent metal dependence. The minimization of the ribozyme's size and the ability to substitute 2'-OMe for 2'-F and 2'-NH2 moieties yielded the motif from these selections most suited for both nuclease stability and therapeutic development. This motif requires only two 2'-NH2-Cs and functions as a 36-mer. Its substrate sequence requirements were determined to be 5'-Y-G-H-3'. Its half-life in human serum is >100 h. In physiologically relevant magnesium concentrations [approximately 1 mM] its kcat = 0.07 min(-1), Km = 70 nM. This report presents a novel nuclease stable ribozyme, designated Zinzyme, possessing optimal activity in simulated physiological conditions and ready for testing in a therapeutic setting.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amarzguioui M., Prydz H. Hammerhead ribozyme design and application. Cell Mol Life Sci. 1998 Nov;54(11):1175–1202. doi: 10.1007/s000180050247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaudry A., DeFoe J., Zinnen S., Burgin A., Beigelman L. In vitro selection of a novel nuclease-resistant RNA phosphodiesterase. Chem Biol. 2000 May;7(5):323–334. doi: 10.1016/s1074-5521(00)00110-1. [DOI] [PubMed] [Google Scholar]
  3. Beigelman L., McSwiggen J. A., Draper K. G., Gonzalez C., Jensen K., Karpeisky A. M., Modak A. S., Matulic-Adamic J., DiRenzo A. B., Haeberli P. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J Biol Chem. 1995 Oct 27;270(43):25702–25708. doi: 10.1074/jbc.270.43.25702. [DOI] [PubMed] [Google Scholar]
  4. Birikh K. R., Heaton P. A., Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 Apr 1;245(1):1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x. [DOI] [PubMed] [Google Scholar]
  5. Breaker R. R., Joyce G. F. A DNA enzyme that cleaves RNA. Chem Biol. 1994 Dec;1(4):223–229. doi: 10.1016/1074-5521(94)90014-0. [DOI] [PubMed] [Google Scholar]
  6. Breaker R. R., Joyce G. F. A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity. Chem Biol. 1995 Oct;2(10):655–660. doi: 10.1016/1074-5521(95)90028-4. [DOI] [PubMed] [Google Scholar]
  7. Burgin A. B., Jr, Gonzalez C., Matulic-Adamic J., Karpeisky A. M., Usman N., McSwiggen J. A., Beigelman L. Chemically modified hammerhead ribozymes with improved catalytic rates. Biochemistry. 1996 Nov 12;35(45):14090–14097. doi: 10.1021/bi961264u. [DOI] [PubMed] [Google Scholar]
  8. Citti L., Eckstein F., Capecchi B., Mariani L., Nevischi S., Poggi A., Rainaldi G. Transient transfection of a synthetic hammerhead ribozyme targeted against human MGMT gene to cells in culture potentiates the genotoxicity of the alkylation damage induced by mitozolomide. Antisense Nucleic Acid Drug Dev. 1999 Apr;9(2):125–133. doi: 10.1089/oli.1.1999.9.125. [DOI] [PubMed] [Google Scholar]
  9. Clouet-D'Orval B., Uhlenbeck O. C. Kinetic characterization of two I/II format hammerhead ribozymes. RNA. 1996 May;2(5):483–491. [PMC free article] [PubMed] [Google Scholar]
  10. Clouet-d'Orval B., Stage T. K., Uhlenbeck O. C. Neomycin inhibition of the hammerhead ribozyme involves ionic interactions. Biochemistry. 1995 Sep 5;34(35):11186–11190. doi: 10.1021/bi00035a025. [DOI] [PubMed] [Google Scholar]
  11. Eaton B. E., Pieken W. A. Ribonucleosides and RNA. Annu Rev Biochem. 1995;64:837–863. doi: 10.1146/annurev.bi.64.070195.004201. [DOI] [PubMed] [Google Scholar]
  12. Eaton B. E. The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol. 1997 Jun;1(1):10–16. doi: 10.1016/s1367-5931(97)80103-2. [DOI] [PubMed] [Google Scholar]
  13. Hampel A., Cowan J. A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol. 1997 Jul;4(7):513–517. doi: 10.1016/s1074-5521(97)90323-9. [DOI] [PubMed] [Google Scholar]
  14. Hertel K. J., Uhlenbeck O. C. The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry. 1995 Feb 7;34(5):1744–1749. doi: 10.1021/bi00005a031. [DOI] [PubMed] [Google Scholar]
  15. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jaeger J. A., Turner D. H., Zuker M. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 1990;183:281–306. doi: 10.1016/0076-6879(90)83019-6. [DOI] [PubMed] [Google Scholar]
  17. Jarvis T. C., Wincott F. E., Alby L. J., McSwiggen J. A., Beigelman L., Gustofson J., DiRenzo A., Levy K., Arthur M., Matulic-Adamic J. Optimizing the cell efficacy of synthetic ribozymes. Site selection and chemical modifications of ribozymes targeting the proto-oncogene c-myb. J Biol Chem. 1996 Nov 15;271(46):29107–29112. doi: 10.1074/jbc.271.46.29107. [DOI] [PubMed] [Google Scholar]
  18. Kawasaki A. M., Casper M. D., Freier S. M., Lesnik E. A., Zounes M. C., Cummins L. L., Gonzalez C., Cook P. D. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993 Apr 2;36(7):831–841. doi: 10.1021/jm00059a007. [DOI] [PubMed] [Google Scholar]
  19. Klecker R. W., Katki A. G., Collins J. M. Toxicity, metabolism, DNA incorporation with lack of repair, and lactate production for 1-(2'-fluoro-2'-deoxy-beta-D-arabinofuranosyl)-5-iodouracil in U-937 and MOLT-4 cells. Mol Pharmacol. 1994 Dec;46(6):1204–1209. [PubMed] [Google Scholar]
  20. Kore A. R., Vaish N. K., Morris J. A., Eckstein F. In vitro evolution of the hammerhead ribozyme to a purine-specific ribozyme using mutagenic PCR with two nucleotide analogues. J Mol Biol. 2000 Sep 1;301(5):1113–1121. doi: 10.1006/jmbi.2000.4020. [DOI] [PubMed] [Google Scholar]
  21. Lee P. A., Blatt L. M., Blanchard K. S., Bouhana K. S., Pavco P. A., Bellon L., Sandberg J. A. Pharmacokinetics and tissue distribution of a ribozyme directed against hepatitis C virus RNA following subcutaneous or intravenous administration in mice. Hepatology. 2000 Sep;32(3):640–646. doi: 10.1053/jhep.2000.16599. [DOI] [PubMed] [Google Scholar]
  22. Leirdal M., Sioud M. High cleavage activity and stability of hammerhead ribozymes with a uniform 2'-amino pyrimidine modification. Biochem Biophys Res Commun. 1998 Sep 8;250(1):171–174. doi: 10.1006/bbrc.1998.9286. [DOI] [PubMed] [Google Scholar]
  23. Leirdal M., Sioud M. Ribozyme inhibition of the protein kinase C alpha triggers apoptosis in glioma cells. Br J Cancer. 1999 Jul;80(10):1558–1564. doi: 10.1038/sj.bjc.6690560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matulic-Adamic J., Daniher A. T., Karpeisky A., Haeberli P., Sweedler D., Beigelman L. Functionalized nucleoside 5'-triphosphates for in vitro selection of new catalytic ribonucleic acids. Bioorg Med Chem Lett. 2000 Jun 5;10(11):1299–1302. doi: 10.1016/s0960-894x(00)00226-2. [DOI] [PubMed] [Google Scholar]
  25. McKenzie R., Fried M. W., Sallie R., Conjeevaram H., Di Bisceglie A. M., Park Y., Savarese B., Kleiner D., Tsokos M., Luciano C. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med. 1995 Oct 26;333(17):1099–1105. doi: 10.1056/NEJM199510263331702. [DOI] [PubMed] [Google Scholar]
  26. Murray J. B., Seyhan A. A., Walter N. G., Burke J. M., Scott W. G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol. 1998 Oct;5(10):587–595. doi: 10.1016/s1074-5521(98)90116-8. [DOI] [PubMed] [Google Scholar]
  27. O'Rear J. L., Wang S., Feig A. L., Beigelman L., Uhlenbeck O. C., Herschlag D. Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations. RNA. 2001 Apr;7(4):537–545. doi: 10.1017/s1355838201002461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Olsen D. B., Benseler F., Aurup H., Pieken W. A., Eckstein F. Study of a hammerhead ribozyme containing 2'-modified adenosine residues. Biochemistry. 1991 Oct 8;30(40):9735–9741. doi: 10.1021/bi00104a024. [DOI] [PubMed] [Google Scholar]
  29. Padilla R., Sousa R. Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2'-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res. 1999 Mar 15;27(6):1561–1563. doi: 10.1093/nar/27.6.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parry T. J., Cushman C., Gallegos A. M., Agrawal A. B., Richardson M., Andrews L. E., Maloney L., Mokler V. R., Wincott F. E., Pavco P. A. Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res. 1999 Jul 1;27(13):2569–2577. doi: 10.1093/nar/27.13.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pavco P. A., Bouhana K. S., Gallegos A. M., Agrawal A., Blanchard K. S., Grimm S. L., Jensen K. L., Andrews L. E., Wincott F. E., Pitot P. A. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res. 2000 May;6(5):2094–2103. [PubMed] [Google Scholar]
  32. Perrin D. M., Garestier T., Hélène C. Bridging the gap between proteins and nucleic acids: a metal-independent RNAseA mimic with two protein-like functionalities. J Am Chem Soc. 2001 Feb 28;123(8):1556–1563. doi: 10.1021/ja003290s. [DOI] [PubMed] [Google Scholar]
  33. Pieken W. A., Olsen D. B., Benseler F., Aurup H., Eckstein F. Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. Science. 1991 Jul 19;253(5017):314–317. doi: 10.1126/science.1857967. [DOI] [PubMed] [Google Scholar]
  34. Romani A., Scarpa A. Regulation of cell magnesium. Arch Biochem Biophys. 1992 Oct;298(1):1–12. doi: 10.1016/0003-9861(92)90086-c. [DOI] [PubMed] [Google Scholar]
  35. Roth A., Breaker R. R. An amino acid as a cofactor for a catalytic polynucleotide. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6027–6031. doi: 10.1073/pnas.95.11.6027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sandberg J. A., Bouhana K. S., Gallegos A. M., Agrawal A. B., Grimm S. L., Wincott F. E., Reynolds M. A., Pavco P. A., Parry T. J. Pharmacokinetics of an antiangiogenic ribozyme (ANGIOZYME) in the mouse. Antisense Nucleic Acid Drug Dev. 1999 Jun;9(3):271–277. doi: 10.1089/oli.1.1999.9.271. [DOI] [PubMed] [Google Scholar]
  37. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Santoro S. W., Joyce G. F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry. 1998 Sep 22;37(38):13330–13342. doi: 10.1021/bi9812221. [DOI] [PubMed] [Google Scholar]
  39. Santoro S. W., Joyce G. F., Sakthivel K., Gramatikova S., Barbas CF 3rd RNA cleavage by a DNA enzyme with extended chemical functionality. J Am Chem Soc. 2000 Mar 22;122(11):2433–2439. doi: 10.1021/ja993688s. [DOI] [PubMed] [Google Scholar]
  40. Seelig B., Jäschke A. A small catalytic RNA motif with Diels-Alderase activity. Chem Biol. 1999 Mar;6(3):167–176. doi: 10.1016/S1074-5521(99)89008-5. [DOI] [PubMed] [Google Scholar]
  41. Sioud M., Sørensen D. R. A nuclease-resistant protein kinase C alpha ribozyme blocks glioma cell growth. Nat Biotechnol. 1998 Jun;16(6):556–561. doi: 10.1038/nbt0698-556. [DOI] [PubMed] [Google Scholar]
  42. Sousa R., Padilla R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995 Sep 15;14(18):4609–4621. doi: 10.1002/j.1460-2075.1995.tb00140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tang J., Breaker R. R. Structural diversity of self-cleaving ribozymes. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5784–5789. doi: 10.1073/pnas.97.11.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tarasow T. M., Tarasow S. L., Eaton B. E. RNA-catalysed carbon-carbon bond formation. Nature. 1997 Sep 4;389(6646):54–57. doi: 10.1038/37950. [DOI] [PubMed] [Google Scholar]
  45. Turner D. H., Sugimoto N., Jaeger J. A., Longfellow C. E., Freier S. M., Kierzek R. Improved parameters for prediction of RNA structure. Cold Spring Harb Symp Quant Biol. 1987;52:123–133. doi: 10.1101/sqb.1987.052.01.017. [DOI] [PubMed] [Google Scholar]
  46. Vaish N. K., Heaton P. A., Fedorova O., Eckstein F. In vitro selection of a purine nucleotide-specific hammerheadlike ribozyme. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2158–2162. doi: 10.1073/pnas.95.5.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Williams D. M., Pieken W. A., Eckstein F. Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):918–921. doi: 10.1073/pnas.89.3.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Williams K. P., Ciafré S., Tocchini-Valentini G. P. Selection of novel Mg(2+)-dependent self-cleaving ribozymes. EMBO J. 1995 Sep 15;14(18):4551–4557. doi: 10.1002/j.1460-2075.1995.tb00134.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yang J. H., Usman N., Chartrand P., Cedergren R. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry. 1992 Jun 2;31(21):5005–5009. doi: 10.1021/bi00136a013. [DOI] [PubMed] [Google Scholar]
  51. Zuker M., Jaeger J. A., Turner D. H. A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res. 1991 May 25;19(10):2707–2714. doi: 10.1093/nar/19.10.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES