Skip to main content
RNA logoLink to RNA
. 2002 Apr;8(4):412–425. doi: 10.1017/s1355838202029321

A novel mechanism for protein-assisted group I intron splicing.

Amanda Solem 1, Piyali Chatterjee 1, Mark G Caprara 1
PMCID: PMC1370265  PMID: 11991637

Abstract

Previously it was shown that the Aspergillus nidulans (A.n.) mitochondrial COB intron maturase, I-AniI, facilitates splicing of the COB intron in vitro. In this study, we apply kinetic analysis of binding and splicing along with RNA deletion analysis to gain insight into the mechanism of I-AniI facilitated splicing. Our results are consistent with I-AniI and A.n. COB pre-RNA forming a specific but labile encounter complex that is resolved into the native, splicing-competent complex. Significantly, kinetic analysis of splicing shows that the resolution step is rate limiting for splicing. RNA deletion studies show that I-AniI requires most of the A.n. COB intron for binding suggesting that the integrity of the I-AniI-binding site depends on overall RNA tertiary structure. These results, taken together with the observation that A.n. COB intron lacks significant stable tertiary structure in the absence of protein, support a model in which I-AniI preassociates with an unfolded COB intron via a "labile" interaction that facilitates correct folding of the intron catalytic core, perhaps by resolving misfolded RNAs or narrowing the number of conformations sampled by the intron during its search for native structure. The active intron conformation is then "locked in" by specific binding of I-Anil to its intron interaction site.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belfort M., Roberts R. J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997 Sep 1;25(17):3379–3388. doi: 10.1093/nar/25.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell Frank E., Jr, Cassano Adam G., Anderson Vernon E., Harris Michael E. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J Mol Biol. 2002 Mar 15;317(1):21–40. doi: 10.1006/jmbi.2002.5413. [DOI] [PubMed] [Google Scholar]
  3. Caprara M. G., Lehnert V., Lambowitz A. M., Westhof E. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell. 1996 Dec 13;87(6):1135–1145. doi: 10.1016/s0092-8674(00)81807-3. [DOI] [PubMed] [Google Scholar]
  4. Caprara M. G., Mohr G., Lambowitz A. M. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. J Mol Biol. 1996 Apr 5;257(3):512–531. doi: 10.1006/jmbi.1996.0182. [DOI] [PubMed] [Google Scholar]
  5. Caprara M. G., Myers C. A., Lambowitz A. M. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions. J Mol Biol. 2001 Apr 27;308(2):165–190. doi: 10.1006/jmbi.2001.4581. [DOI] [PubMed] [Google Scholar]
  6. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  7. Chevalier B. S., Stoddard B. L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 2001 Sep 15;29(18):3757–3774. doi: 10.1093/nar/29.18.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coetzee T., Herschlag D., Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 1994 Jul 1;8(13):1575–1588. doi: 10.1101/gad.8.13.1575. [DOI] [PubMed] [Google Scholar]
  9. Costa M., Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995 Mar 15;14(6):1276–1285. doi: 10.1002/j.1460-2075.1995.tb07111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalgaard J. Z., Klar A. J., Moser M. J., Holley W. R., Chatterjee A., Mian I. S. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res. 1997 Nov 15;25(22):4626–4638. doi: 10.1093/nar/25.22.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engelhardt M. A., Doherty E. A., Knitt D. S., Doudna J. A., Herschlag D. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis. Biochemistry. 2000 Mar 14;39(10):2639–2651. doi: 10.1021/bi992313g. [DOI] [PubMed] [Google Scholar]
  12. Fersht A. R., Requena Y. Equilibrium and rate constants for the interconversion of two conformations of -chymotrypsin. The existence of a catalytically inactive conformation at neutral p H. J Mol Biol. 1971 Sep 14;60(2):279–290. doi: 10.1016/0022-2836(71)90294-4. [DOI] [PubMed] [Google Scholar]
  13. Fierke C. A., Hammes G. G. Transient kinetic approaches to enzyme mechanisms. Methods Enzymol. 1995;249:3–37. doi: 10.1016/0076-6879(95)49029-9. [DOI] [PubMed] [Google Scholar]
  14. Geese W. J., Waring R. B. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA. J Mol Biol. 2001 May 11;308(4):609–622. doi: 10.1006/jmbi.2001.4609. [DOI] [PubMed] [Google Scholar]
  15. Golden B. L., Gooding A. R., Podell E. R., Cech T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 9;282(5387):259–264. doi: 10.1126/science.282.5387.259. [DOI] [PubMed] [Google Scholar]
  16. Herschlag D., Khosla M. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step. Biochemistry. 1994 May 3;33(17):5291–5297. doi: 10.1021/bi00183a036. [DOI] [PubMed] [Google Scholar]
  17. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995 Sep 8;270(36):20871–20874. doi: 10.1074/jbc.270.36.20871. [DOI] [PubMed] [Google Scholar]
  18. Ho Y., Kim S. J., Waring R. B. A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):8994–8999. doi: 10.1073/pnas.94.17.8994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ho Y., Waring R. B. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. J Mol Biol. 1999 Oct 8;292(5):987–1001. doi: 10.1006/jmbi.1999.3070. [DOI] [PubMed] [Google Scholar]
  20. Hur M., Geese W. J., Waring R. B. Self-splicing activity of the mitochondrial group-I introns from Aspergillus nidulans and related introns from other species. Curr Genet. 1997 Dec;32(6):399–407. doi: 10.1007/s002940050294. [DOI] [PubMed] [Google Scholar]
  21. Jurica M. S., Stoddard B. L. Homing endonucleases: structure, function and evolution. Cell Mol Life Sci. 1999 Aug 15;55(10):1304–1326. doi: 10.1007/s000180050372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lambowitz A. M. Infectious introns. Cell. 1989 Feb 10;56(3):323–326. doi: 10.1016/0092-8674(89)90232-8. [DOI] [PubMed] [Google Scholar]
  23. Lambowitz A. M., Perlman P. S. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci. 1990 Nov;15(11):440–444. doi: 10.1016/0968-0004(90)90283-h. [DOI] [PubMed] [Google Scholar]
  24. Lehnert V., Jaeger L., Michel F., Westhof E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem Biol. 1996 Dec;3(12):993–1009. doi: 10.1016/s1074-5521(96)90166-0. [DOI] [PubMed] [Google Scholar]
  25. Mannella C. A., Collins R. A., Green M. R., Lambowitz A. M. Defective splicing of mitochondrial rRNA in cytochrome-deficient nuclear mutants of Neurospora crassa. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2635–2639. doi: 10.1073/pnas.76.6.2635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McConnell T. S., Cech T. R. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction. Biochemistry. 1995 Mar 28;34(12):4056–4067. doi: 10.1021/bi00012a024. [DOI] [PubMed] [Google Scholar]
  27. McGraw P., Tzagoloff A. Assembly of the mitochondrial membrane system. Characterization of a yeast nuclear gene involved in the processing of the cytochrome b pre-mRNA. J Biol Chem. 1983 Aug 10;258(15):9459–9468. [PubMed] [Google Scholar]
  28. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  29. Pan J., Woodson S. A. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol. 1998 Jul 24;280(4):597–609. doi: 10.1006/jmbi.1998.1901. [DOI] [PubMed] [Google Scholar]
  30. Pan J., Woodson S. A. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA. J Mol Biol. 1999 Dec 10;294(4):955–965. doi: 10.1006/jmbi.1999.3298. [DOI] [PubMed] [Google Scholar]
  31. Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  32. Rose M. A., Weeks K. M. Visualizing induced fit in early assembly of the human signal recognition particle. Nat Struct Biol. 2001 Jun;8(6):515–520. doi: 10.1038/88577. [DOI] [PubMed] [Google Scholar]
  33. Saldanha R. J., Patel S. S., Surendran R., Lee J. C., Lambowitz A. M. Involvement of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing. A new method for purifying the protein and characterization of physical and enzymatic properties pertinent to splicing. Biochemistry. 1995 Jan 31;34(4):1275–1287. doi: 10.1021/bi00004a022. [DOI] [PubMed] [Google Scholar]
  34. Saldanha R., Ellington A., Lambowitz A. M. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. J Mol Biol. 1996 Aug 9;261(1):23–42. doi: 10.1006/jmbi.1996.0439. [DOI] [PubMed] [Google Scholar]
  35. Shaw L. C., Lewin A. S. Protein-induced folding of a group I intron in cytochrome b pre-mRNA. J Biol Chem. 1995 Sep 15;270(37):21552–21562. doi: 10.1074/jbc.270.37.21552. [DOI] [PubMed] [Google Scholar]
  36. Sullivan J. J., Bjornson K. P., Sowers L. C., deHaseth P. L. Spectroscopic determination of open complex formation at promoters for Escherichia coli RNA polymerase. Biochemistry. 1997 Jul 1;36(26):8005–8012. doi: 10.1021/bi970363k. [DOI] [PubMed] [Google Scholar]
  37. Thirumalai D., Lee N., Woodson S. A., Klimov D. Early events in RNA folding. Annu Rev Phys Chem. 2001;52:751–762. doi: 10.1146/annurev.physchem.52.1.751. [DOI] [PubMed] [Google Scholar]
  38. Treiber D. K., Williamson J. R. Beyond kinetic traps in RNA folding. Curr Opin Struct Biol. 2001 Jun;11(3):309–314. doi: 10.1016/s0959-440x(00)00206-2. [DOI] [PubMed] [Google Scholar]
  39. Wallweber G. J., Mohr S., Rennard R., Caprara M. G., Lambowitz A. M. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF. RNA. 1997 Feb;3(2):114–131. [PMC free article] [PubMed] [Google Scholar]
  40. Webb A. E., Weeks K. M. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex. Nat Struct Biol. 2001 Feb;8(2):135–140. doi: 10.1038/84124. [DOI] [PubMed] [Google Scholar]
  41. Weeks K. M., Cech T. R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science. 1996 Jan 19;271(5247):345–348. doi: 10.1126/science.271.5247.345. [DOI] [PubMed] [Google Scholar]
  42. Weeks K. M., Cech T. R. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Biochemistry. 1995 Jun 13;34(23):7728–7738. doi: 10.1021/bi00023a020. [DOI] [PubMed] [Google Scholar]
  43. Weeks K. M., Cech T. R. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain. Cell. 1995 Jul 28;82(2):221–230. doi: 10.1016/0092-8674(95)90309-7. [DOI] [PubMed] [Google Scholar]
  44. Weeks K. M. Protein-facilitated RNA folding. Curr Opin Struct Biol. 1997 Jun;7(3):336–342. doi: 10.1016/s0959-440x(97)80048-6. [DOI] [PubMed] [Google Scholar]
  45. Wernette C. M., Saldahna R., Perlman P. S., Butow R. A. Purification of a site-specific endonuclease, I-Sce II, encoded by intron 4 alpha of the mitochondrial coxI gene of Saccharomyces cerevisiae. J Biol Chem. 1990 Nov 5;265(31):18976–18982. [PubMed] [Google Scholar]
  46. Woodson S. A. Recent insights on RNA folding mechanisms from catalytic RNA. Cell Mol Life Sci. 2000 May;57(5):796–808. doi: 10.1007/s000180050042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yarus M., Berg P. On the properties and utility of a membrane filter assay in the study of isoleucyl-tRNA synthetase. Anal Biochem. 1970 Jun;35(2):450–465. doi: 10.1016/0003-2697(70)90207-1. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES