Skip to main content
RNA logoLink to RNA
. 2002 Apr;8(4):464–477. doi: 10.1017/s1355838202020289

Delta ribozyme benefits from a good stability in vitro that becomes outstanding in vivo.

Dominique Lévesque 1, Sanaa Choufani 1, Jean-Pierre Perreault 1
PMCID: PMC1370269  PMID: 11991641

Abstract

The stability of a trans-acting delta ribozyme was studied under various conditions. Although in vitro (i.e., in the presence of protein extracts) this delta ribozyme appears to be only slightly more stable than a hammerhead ribozyme, in vivo (i.e., after cell transfection) it exhibits an outstanding stability that manifests itself in the calculated half-life of over 100 h regardless of the means of transfection. The P2 stem, which includes both the 5' and 3' ends, is shown to play a critical role in this stability. Direct mutagenesis of the most nuclease susceptible nucleotides failed to generate a more stable ribozyme that retained the same catalytic potential. Clearly, delta ribozyme appears to be well adapted to the human cell environment, and is therefore ideal for the development of a gene-inactivation system.

Full Text

The Full Text of this article is available as a PDF (14.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananvoranich S., Perreault J. P. Substrate specificity of delta ribozyme cleavage. J Biol Chem. 1998 May 22;273(21):13182–13188. doi: 10.1074/jbc.273.21.13182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananvoranich S., Perreault J. P. The kinetics and magnesium requirements for the folding of antigenomic delta ribozymes. Biochem Biophys Res Commun. 2000 Apr 13;270(2):600–607. doi: 10.1006/bbrc.2000.2465. [DOI] [PubMed] [Google Scholar]
  3. Beaudry D., Busière F., Lareau F., Lessard C., Perreault J. P. The RNA of both polarities of the peach latent mosaic viroid self-cleaves in vitro solely by single hammerhead structures. Nucleic Acids Res. 1995 Mar 11;23(5):745–752. doi: 10.1093/nar/23.5.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Been M. D., Wickham G. S. Self-cleaving ribozymes of hepatitis delta virus RNA. Eur J Biochem. 1997 Aug 1;247(3):741–753. doi: 10.1111/j.1432-1033.1997.00741.x. [DOI] [PubMed] [Google Scholar]
  5. Bkaily G., Jacques D., Pothier P. Use of confocal microscopy to investigate cell structure and function. Methods Enzymol. 1999;307:119–135. doi: 10.1016/s0076-6879(99)07010-x. [DOI] [PubMed] [Google Scholar]
  6. Bramlage B., Alefelder S., Marschall P., Eckstein F. Inhibition of luciferase expression by synthetic hammerhead ribozymes and their cellular uptake. Nucleic Acids Res. 1999 Aug 1;27(15):3159–3167. doi: 10.1093/nar/27.15.3159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cagnon L., Rossi J. J. Downregulation of the CCR5 beta-chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Antisense Nucleic Acid Drug Dev. 2000 Aug;10(4):251–261. doi: 10.1089/108729000421439. [DOI] [PubMed] [Google Scholar]
  8. Chowrira B. M., Pavco P. A., McSwiggen J. A. In vitro and in vivo comparison of hammerhead, hairpin, and hepatitis delta virus self-processing ribozyme cassettes. J Biol Chem. 1994 Oct 14;269(41):25856–25864. [PubMed] [Google Scholar]
  9. Doherty E. A., Doudna J. A. Ribozyme structures and mechanisms. Annu Rev Biochem. 2000;69:597–615. doi: 10.1146/annurev.biochem.69.1.597. [DOI] [PubMed] [Google Scholar]
  10. Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
  13. Gao X., Huang L. Cytoplasmic expression of a reporter gene by co-delivery of T7 RNA polymerase and T7 promoter sequence with cationic liposomes. Nucleic Acids Res. 1993 Jun 25;21(12):2867–2872. doi: 10.1093/nar/21.12.2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guhaniyogi J., Brewer G. Regulation of mRNA stability in mammalian cells. Gene. 2001 Mar 7;265(1-2):11–23. doi: 10.1016/s0378-1119(01)00350-x. [DOI] [PubMed] [Google Scholar]
  15. Karikó K., Megyeri K., Xiao Q., Barnathan E. S. Lipofectin-aided cell delivery of ribozyme targeted to human urokinase receptor mRNA. FEBS Lett. 1994 Sep 19;352(1):41–44. doi: 10.1016/0014-5793(94)00914-7. [DOI] [PubMed] [Google Scholar]
  16. Kato Y., Kuwabara T., Warashina M., Toda H., Taira K. Relationships between the activities in vitro and in vivo of various kinds of ribozyme and their intracellular localization in mammalian cells. J Biol Chem. 2001 Jan 30;276(18):15378–15385. doi: 10.1074/jbc.M010570200. [DOI] [PubMed] [Google Scholar]
  17. Lafontaine D., Mercure S., Perreault J. P. Update of the viroid and viroid-like sequence database: addition of a hepatitis delta virus RNA section. Nucleic Acids Res. 1997 Jan 1;25(1):123–125. doi: 10.1093/nar/25.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malone R. W., Felgner P. L., Verma I. M. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6077–6081. doi: 10.1073/pnas.86.16.6077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mercure S., Lafontaine D., Ananvoranich S., Perreault J. P. Kinetic analysis of delta ribozyme cleavage. Biochemistry. 1998 Dec 1;37(48):16975–16982. doi: 10.1021/bi9809775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakano S., Chadalavada D. M., Bevilacqua P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science. 2000 Feb 25;287(5457):1493–1497. doi: 10.1126/science.287.5457.1493. [DOI] [PubMed] [Google Scholar]
  21. Nicholson A. W. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev. 1999 Jun;23(3):371–390. doi: 10.1111/j.1574-6976.1999.tb00405.x. [DOI] [PubMed] [Google Scholar]
  22. Nishikawa F., Nishikawa S. Requirement for canonical base pairing in the short pseudoknot structure of genomic hepatitis delta virus ribozyme. Nucleic Acids Res. 2000 Feb 15;28(4):925–931. doi: 10.1093/nar/28.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pattnaik A. K., Ball L. A., LeGrone A. W., Wertz G. W. Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell. 1992 Jun 12;69(6):1011–1020. doi: 10.1016/0092-8674(92)90619-n. [DOI] [PubMed] [Google Scholar]
  24. Prasmickaite L., Hogset A., Maelandsmo G., Berg K., Goodchild J., Perkins T., Fodstad O., Hovig E. Intracellular metabolism of a 2'-O-methyl-stabilized ribozyme after uptake by DOTAP transfection or asfree ribozyme. A study by capillary electrophoresis. Nucleic Acids Res. 1998 Sep 15;26(18):4241–4248. doi: 10.1093/nar/26.18.4241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rossi J. J. Ribozyme therapy for HIV infection. Adv Drug Deliv Rev. 2000 Oct 31;44(1):71–78. doi: 10.1016/s0169-409x(00)00085-5. [DOI] [PubMed] [Google Scholar]
  26. Roy G., Ananvoranich S., Perreault J. P. Delta ribozyme has the ability to cleave in transan mRNA. Nucleic Acids Res. 1999 Feb 15;27(4):942–948. doi: 10.1093/nar/27.4.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sioud M., Opstad A., Zhao J. Q., Levitz R., Benham C., Drlica K. In vivo decay kinetic parameters of hammerhead ribozymes. Nucleic Acids Res. 1994 Dec 25;22(25):5571–5575. doi: 10.1093/nar/22.25.5571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sorrentino S. Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci. 1998 Aug;54(8):785–794. doi: 10.1007/s000180050207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tay L., Yin-Murphy M., Chua P. H., Koh L. H. Prevalence of coxsackievirus B antibody in patients with suspected rheumatic fever and rheumatic heart disease. Singapore Med J. 1983 Feb;24(1):37–40. [PubMed] [Google Scholar]
  30. Verma S., Eckstein F. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem. 1998;67:99–134. doi: 10.1146/annurev.biochem.67.1.99. [DOI] [PubMed] [Google Scholar]
  31. Wadkins T. S., Perrotta A. T., Ferré-D'Amaré A. R., Doudna J. A., Been M. D. A nested double pseudoknot is required for self-cleavage activity of both the genomic and antigenomic hepatitis delta virus ribozymes. RNA. 1999 Jun;5(6):720–727. doi: 10.1017/s1355838299990209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES