Skip to main content
RNA logoLink to RNA
. 2002 Apr;8(4):534–541. doi: 10.1017/s1355838201020416

Lead(II) as a probe for investigating RNA structure in vivo.

Magnus Lindell 1, Pascale Romby 1, E Gerhart H Wagner 1
PMCID: PMC1370274  PMID: 11991646

Abstract

In this communication, we describe a simple and reliable method for RNA structure determination in vivo, using the divalent ion, lead(II), as a structural probe. Lead(II) is known to cleave RNA within single-stranded regions, loops, and bulges, whereas cleavages in double-stranded regions are weaker or absent. Because the ion easily entered bacterial cells, Escherichia coli cultures were treated by addition of 50-100 mM lead(II) acetate for 3-7 min, resulting in partial cleavage of RNA in vivo. Cleavage positions were mapped by reverse transcription analysis of total extracted RNA. Three RNAs were analyzed: tmRNA, CopT (the target of the antisense RNA CopA), and the leader region of the ompF mRNA. All three RNAs had previously been analyzed in vitro, and secondary structure models were available. The results presented here show that lead(II) cleavages in vivo yield detailed structural information for these RNAs, which was in good agreement with the models proposed based on in vitro work. These data illustrate the potential of lead(II) as a sequence-independent RNA structure probe for use in living cells.

Full Text

The Full Text of this article is available as a PDF (12.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altuvia S., Weinstein-Fischer D., Zhang A., Postow L., Storz G. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell. 1997 Jul 11;90(1):43–53. doi: 10.1016/s0092-8674(00)80312-8. [DOI] [PubMed] [Google Scholar]
  2. Andersen J., Forst S. A., Zhao K., Inouye M., Delihas N. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem. 1989 Oct 25;264(30):17961–17970. [PubMed] [Google Scholar]
  3. Ares M., Jr, Igel A. H. Lethal and temperature-sensitive mutations and their suppressors identify an essential structural element in U2 small nuclear RNA. Genes Dev. 1990 Dec;4(12A):2132–2145. doi: 10.1101/gad.4.12a.2132. [DOI] [PubMed] [Google Scholar]
  4. Balzer M., Wagner R. A chemical modification method for the structural analysis of RNA and RNA-protein complexes within living cells. Anal Biochem. 1998 Feb 15;256(2):240–242. doi: 10.1006/abio.1997.2499. [DOI] [PubMed] [Google Scholar]
  5. Blomberg P., Engdahl H. M., Malmgren C., Romby P., Wagner E. G. Replication control of plasmid R1: disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site permits tap-independent RepA synthesis. Mol Microbiol. 1994 Apr;12(1):49–60. doi: 10.1111/j.1365-2958.1994.tb00994.x. [DOI] [PubMed] [Google Scholar]
  6. Blomberg P., Wagner E. G., Nordström K. Control of replication of plasmid R1: the duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by RNase III. EMBO J. 1990 Jul;9(7):2331–2340. doi: 10.1002/j.1460-2075.1990.tb07405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown R. S., Dewan J. C., Klug A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry. 1985 Aug 27;24(18):4785–4801. doi: 10.1021/bi00339a012. [DOI] [PubMed] [Google Scholar]
  8. Brunel C., Romby P., Westhof E., Ehresmann C., Ehresmann B. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol. 1991 Sep 5;221(1):293–308. doi: 10.1016/0022-2836(91)80220-o. [DOI] [PubMed] [Google Scholar]
  9. Churchward G., Belin D., Nagamine Y. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene. 1984 Nov;31(1-3):165–171. doi: 10.1016/0378-1119(84)90207-5. [DOI] [PubMed] [Google Scholar]
  10. Ciesiołka J., Michałowski D., Wrzesinski J., Krajewski J., Krzyzosiak W. J. Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J Mol Biol. 1998 Jan 16;275(2):211–220. doi: 10.1006/jmbi.1997.1462. [DOI] [PubMed] [Google Scholar]
  11. Climie S. C., Friesen J. D. In vivo and in vitro structural analysis of the rplJ mRNA leader of Escherichia coli. Protection by bound L10-L7/L12. J Biol Chem. 1988 Oct 15;263(29):15166–15175. [PubMed] [Google Scholar]
  12. David L., Lambert D., Gendron P., Major F. Leadzyme. Methods Enzymol. 2001;341:518–540. doi: 10.1016/s0076-6879(01)41174-8. [DOI] [PubMed] [Google Scholar]
  13. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Felden B., Himeno H., Muto A., Atkins J. F., Gesteland R. F. Structural organization of Escherichia coli tmRNA. Biochimie. 1996;78(11-12):979–983. doi: 10.1016/s0300-9084(97)86720-x. [DOI] [PubMed] [Google Scholar]
  15. Felden B., Himeno H., Muto A., McCutcheon J. P., Atkins J. F., Gesteland R. F. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA. 1997 Jan;3(1):89–103. [PMC free article] [PubMed] [Google Scholar]
  16. Gornicki P., Baudin F., Romby P., Wiewiorowski M., Kryzosiak W., Ebel J. P., Ehresmann C., Ehresmann B. Use of lead(II) to probe the structure of large RNA's. Conformation of the 3' terminal domain of E. coli 16S rRNA and its involvement in building the tRNA binding sites. J Biomol Struct Dyn. 1989 Apr;6(5):971–984. doi: 10.1080/07391102.1989.10506525. [DOI] [PubMed] [Google Scholar]
  17. Hickerson R. P., Watkins-Sims C. D., Burrows C. J., Atkins J. F., Gesteland R. F., Felden B. A nickel complex cleaves uridine in folded RNA structures: application to E. coli tmRNA and related engineered molecules. J Mol Biol. 1998 Jun 12;279(3):577–587. doi: 10.1006/jmbi.1998.1813. [DOI] [PubMed] [Google Scholar]
  18. Hjalt T. A., Wagner E. G. Bulged-out nucleotides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo. Nucleic Acids Res. 1995 Feb 25;23(4):580–587. doi: 10.1093/nar/23.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hjalt T. A., Wagner E. G. Bulged-out nucleotides protect an antisense RNA from RNase III cleavage. Nucleic Acids Res. 1995 Feb 25;23(4):571–579. doi: 10.1093/nar/23.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hjalt T., Wagner E. G. The effect of loop size in antisense and target RNAs on the efficiency of antisense RNA control. Nucleic Acids Res. 1992 Dec 25;20(24):6723–6732. doi: 10.1093/nar/20.24.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  22. Kolb F. A., Engdahl H. M., Slagter-Jäger J. G., Ehresmann B., Ehresmann C., Westhof E., Wagner E. G., Romby P. Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 2000 Nov 1;19(21):5905–5915. doi: 10.1093/emboj/19.21.5905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kolb F. A., Malmgren C., Westhof E., Ehresmann C., Ehresmann B., Wagner E. G., Romby P. An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA. 2000 Mar;6(3):311–324. doi: 10.1017/s135583820099215x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Konopka A., Zakharova T. Quantification of bacterial lead resistance via activity assays. J Microbiol Methods. 1999 Jul;37(1):17–22. doi: 10.1016/s0167-7012(99)00032-9. [DOI] [PubMed] [Google Scholar]
  25. Lentzen G., Moine H., Ehresmann C., Ehresmann B., Wintermeyer W. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing. RNA. 1996 Mar;2(3):244–253. [PMC free article] [PubMed] [Google Scholar]
  26. Malmgren C., Wagner E. G., Ehresmann C., Ehresmann B., Romby P. Antisense RNA control of plasmid R1 replication. The dominant product of the antisense rna-mrna binding is not a full RNA duplex. J Biol Chem. 1997 May 9;272(19):12508–12512. doi: 10.1074/jbc.272.19.12508. [DOI] [PubMed] [Google Scholar]
  27. Mayford M., Weisblum B. Conformational alterations in the ermC transcript in vivo during induction. EMBO J. 1989 Dec 20;8(13):4307–4314. doi: 10.1002/j.1460-2075.1989.tb08617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ohman M., Wagner E. G. Secondary structure analysis of the RepA mRNA leader transcript involved in control of replication of plasmid R1. Nucleic Acids Res. 1989 Apr 11;17(7):2557–2579. doi: 10.1093/nar/17.7.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubin J. R., Sundaralingam M. Lead ion binding and RNA chain hydrolysis in phenylalanine tRNA. J Biomol Struct Dyn. 1983 Dec;1(3):639–646. doi: 10.1080/07391102.1983.10507471. [DOI] [PubMed] [Google Scholar]
  30. Schmidt M., Zheng P., Delihas N. Secondary structures of Escherichia coli antisense micF RNA, the 5'-end of the target ompF mRNA, and the RNA/RNA duplex. Biochemistry. 1995 Mar 21;34(11):3621–3631. doi: 10.1021/bi00011a017. [DOI] [PubMed] [Google Scholar]
  31. Senecoff J. F., Meagher R. B. In vivo analysis of plant RNA structure: soybean 18S ribosomal and ribulose-1,5-bisphosphate carboxylase small subunit RNAs. Plant Mol Biol. 1992 Jan;18(2):219–234. doi: 10.1007/BF00034951. [DOI] [PubMed] [Google Scholar]
  32. Wagner E. G., Simons R. W. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol. 1994;48:713–742. doi: 10.1146/annurev.mi.48.100194.003433. [DOI] [PubMed] [Google Scholar]
  33. Williams K. P., Bartel D. P. Phylogenetic analysis of tmRNA secondary structure. RNA. 1996 Dec;2(12):1306–1310. [PMC free article] [PubMed] [Google Scholar]
  34. Zaug A. J., Cech T. R. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA. 1995 Jun;1(4):363–374. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES