Abstract
Unnatural amino acid mutagenesis requires the in vitro production of aminoacyl tRNAs. Bacteriophage T4 RNA ligase is used to ligate a-amino-protected dCA amino acids to 74mer tRNA. Previously, there has been no facile method for evaluating the efficiency of this reaction prior to using the tRNA in translation. We report a novel use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in monitoring the formation of aminoacyl 76mer tRNA. This method is more efficient and precise than the traditional technique of gel electrophoresis. These MALDI conditions should also prove useful for analyzing aminoacyl tRNAs produced through aminoacyl tRNA synthetases and other methods.
Full Text
The Full Text of this article is available as a PDF (307.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakhtiar R., Nelson R. W. Electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry. Emerging technologies in biomedical sciences. Biochem Pharmacol. 2000 Apr 15;59(8):891–905. doi: 10.1016/s0006-2952(99)00317-2. [DOI] [PubMed] [Google Scholar]
- Bakhtiar R., Tse F. L. Biological mass spectrometry: a primer. Mutagenesis. 2000 Sep;15(5):415–430. doi: 10.1093/mutage/15.5.415. [DOI] [PubMed] [Google Scholar]
- Dougherty D. A. Unnatural amino acids as probes of protein structure and function. Curr Opin Chem Biol. 2000 Dec;4(6):645–652. doi: 10.1016/s1367-5931(00)00148-4. [DOI] [PubMed] [Google Scholar]
- Ellman J., Mendel D., Anthony-Cahill S., Noren C. J., Schultz P. G. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins. Methods Enzymol. 1991;202:301–336. doi: 10.1016/0076-6879(91)02017-4. [DOI] [PubMed] [Google Scholar]
- Gruić-Sovulj I., Lüdemann H. C., Hillenkamp F., Kućan IWDZ, Peter-Katalinić J. Detection of noncovalent tRNA.aminoacyl-tRNA synthetase complexes by matrix-assisted laser desorption/ionization mass spectrometry. J Biol Chem. 1997 Dec 19;272(51):32084–32091. doi: 10.1074/jbc.272.51.32084. [DOI] [PubMed] [Google Scholar]
- Helm M., Brulé H., Giegé R., Florentz C. More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs. RNA. 1999 May;5(5):618–621. doi: 10.1017/s1355838299982328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C., Zheng M., Rüdisser S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA. 1999 Sep;5(9):1268–1272. doi: 10.1017/s1355838299991033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirpekar F., Douthwaite S., Roepstorff P. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA. 2000 Feb;6(2):296–306. doi: 10.1017/s1355838200992148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirpekar F., Krogh T. N. RNA fragmentation studied in a matrix-assisted laser desorption/ionisation tandem quadrupole/orthogonal time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 2001;15(1):8–14. doi: 10.1002/1097-0231(20010115)15:1<8::AID-RCM185>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Kirpekar F., Nordhoff E., Kristiansen K., Roepstorff P., Lezius A., Hahner S., Karas M., Hillenkamp F. Matrix assisted laser desorption/ionization mass spectrometry of enzymatically synthesized RNA up to 150 kDa. Nucleic Acids Res. 1994 Sep 25;22(19):3866–3870. doi: 10.1093/nar/22.19.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knochenmuss R, Stortelder A, Breuker K, Zenobi R. Secondary ion-molecule reactions in matrix-assisted laser desorption/ionization. J Mass Spectrom. 2000 Nov;35(11):1237–1245. doi: 10.1002/1096-9888(200011)35:11<1237::AID-JMS74>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Köhrer C., Xie L., Kellerer S., Varshney U., RajBhandary U. L. Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins. Proc Natl Acad Sci U S A. 2001 Nov 20;98(25):14310–14315. doi: 10.1073/pnas.251438898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordhoff E., Cramer R., Karas M., Hillenkamp F., Kirpekar F., Kristiansen K., Roepstorff P. Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 1993 Jul 25;21(15):3347–3357. doi: 10.1093/nar/21.15.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak M. W., Gallivan J. P., Silverman S. K., Labarca C. G., Dougherty D. A., Lester H. A. In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol. 1998;293:504–529. doi: 10.1016/s0076-6879(98)93031-2. [DOI] [PubMed] [Google Scholar]
- Pleiss J. A., Derrick M. L., Uhlenbeck O. C. T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA. 1998 Oct;4(10):1313–1317. doi: 10.1017/s135583829800106x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubelj I., Weygand-Durasević I., Kućan Z. Evidence for two types of complexes formed by yeast tyrosyl-tRNA synthetase with cognate and non-cognate tRNA. Effect of ribonucleoside triphosphates. Eur J Biochem. 1990 Nov 13;193(3):783–788. doi: 10.1111/j.1432-1033.1990.tb19400.x. [DOI] [PubMed] [Google Scholar]
- Saks M. E., Sampson J. R., Nowak M. W., Kearney P. C., Du F., Abelson J. N., Lester H. A., Dougherty D. A. An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression. J Biol Chem. 1996 Sep 20;271(38):23169–23175. doi: 10.1074/jbc.271.38.23169. [DOI] [PubMed] [Google Scholar]
- Silber R., Malathi V. G., Hurwitz J. Purification and properties of bacteriophage T4-induced RNA ligase. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3009–3013. doi: 10.1073/pnas.69.10.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sochacka E., Czerwinska G., Guenther R., Cain R., Agris P. F., Malkiewicz A. Synthesis and properties of uniquely modified oligoribonucleotides: yeast tRNA(Phe) fragments with 6-methyluridine and 5,6-dimethyluridine at site-specific positions. Nucleosides Nucleotides Nucleic Acids. 2000 Mar;19(3):515–531. doi: 10.1080/15257770008035004. [DOI] [PubMed] [Google Scholar]
- Tolson D. A., Nicholson N. H. Sequencing RNA by a combination of exonuclease digestion and uridine specific chemical cleavage using MALDI-TOF. Nucleic Acids Res. 1998 Jan 15;26(2):446–451. doi: 10.1093/nar/26.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]
- Wei J., Lee C. S. Polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry for tRNA mutant analysis. Anal Chem. 1997 Dec 1;69(23):4899–4904. doi: 10.1021/ac970725u. [DOI] [PubMed] [Google Scholar]
- Weygand-Durasević I., Lenhard B., Filipić S., Söll D. The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity. J Biol Chem. 1996 Feb 2;271(5):2455–2461. doi: 10.1074/jbc.271.5.2455. [DOI] [PubMed] [Google Scholar]
- Wolfson A. D., Pleiss J. A., Uhlenbeck O. C. A new assay for tRNA aminoacylation kinetics. RNA. 1998 Aug;4(8):1019–1023. doi: 10.1017/s1355838298980700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L. K., Gross M. L. Matrix-assisted laser desorption/ionization mass spectrometry methods for oligodeoxynucleotides: improvements in matrix, detection limits, quantification, and sequencing. J Am Soc Mass Spectrom. 2000 Oct;11(10):854–865. doi: 10.1016/S1044-0305(00)00161-6. [DOI] [PubMed] [Google Scholar]