Skip to main content
RNA logoLink to RNA
. 2002 May;8(5):601–611. doi: 10.1017/s135583820202071x

Identification of an essential pseudoknot in the putative downstream internal ribosome entry site in giardiavirus transcript.

Srinivas Garlapati 1, Ching C Wang 1
PMCID: PMC1370281  PMID: 12022227

Abstract

Enhanced translation of giardiavirus-luciferase chimeric mRNA in Giardia lamblia requires the initial 264-nt viral capsid coding region as a putative internal ribosomal entry site (IRES). Essential structural elements in this site include (1) a downstream box (DB) complementary to the anti-DB at the 3' end of 16S-like rRNA, (2) stem-loops I, II, III, and IVA, and (3) a pentanucleotide 5'-UCUCC-3' immediately downstream from stem loop IVA. A search for the structural role of the pentanucleotide suggested that it may form a pseudoknot with another pentanucleotide 5'-GGAGA-3' in loop II. Alteration of the two pentanucleotides by site-directed mutagenesis resulted in a drastic reduction in translation of the transcript. But the loss was recovered by compensatory changes in the two sequences, suggesting Watson-Crick base pairings between them. Results from in vitro enzymatic and chemical structural probing supported the presence of such a pseudoknot 143 nt downstream from the initiation codon. Minor repositioning of this codon led invariably to a complete loss of translation, suggesting that the initiation site is confined within a rigid position defined by all the structural elements in the IRES including the pseudoknot. This is the first pseudoknot of its kind shown to play an important role in a downstream IRES of a viral transcript. The finding is particularly interesting because it could reflect a unique feature of translation initiation in Giardia, which is known to have exceedingly short (1-6 nt) 5' untranslated regions in its mRNAs.

Full Text

The Full Text of this article is available as a PDF (410.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam S. L., Wills N. M., Ingram J. A., Atkins J. F., Gesteland R. F. Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus. J Mol Biol. 1999 May 21;288(5):837–852. doi: 10.1006/jmbi.1999.2713. [DOI] [PubMed] [Google Scholar]
  2. Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. J Biol Chem. 1979 Dec 25;254(24):12484–12487. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chang K. Y., Tinoco I., Jr Characterization of a "kissing" hairpin complex derived from the human immunodeficiency virus genome. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8705–8709. doi: 10.1073/pnas.91.18.8705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dam E., Pleij K., Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry. 1992 Dec 1;31(47):11665–11676. doi: 10.1021/bi00162a001. [DOI] [PubMed] [Google Scholar]
  6. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehresmann C., Philippe C., Westhof E., Bénard L., Portier C., Ehresmann B. A pseudoknot is required for efficient translational initiation and regulation of the Escherichia coli rpsO gene coding for ribosomal protein S15. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1131–1140. doi: 10.1139/o95-122. [DOI] [PubMed] [Google Scholar]
  8. Frolov I., Schlesinger S. Translation of Sindbis virus mRNA: analysis of sequences downstream of the initiating AUG codon that enhance translation. J Virol. 1996 Feb;70(2):1182–1190. doi: 10.1128/jvi.70.2.1182-1190.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garlapati S., Chou J., Wang C. C. Specific secondary structures in the capsid-coding region of giardiavirus transcript are required for its translation in Giardia lamblia. J Mol Biol. 2001 May 11;308(4):623–638. doi: 10.1006/jmbi.2001.4568. [DOI] [PubMed] [Google Scholar]
  10. Graff J., Ehrenfeld E. Coding sequences enhance internal initiation of translation by hepatitis A virus RNA in vitro. J Virol. 1998 May;72(5):3571–3577. doi: 10.1128/jvi.72.5.3571-3577.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hilbers C. W., Michiels P. J., Heus H. A. New developments in structure determination of pseudoknots. Biopolymers. 1998;48(2-3):137–153. doi: 10.1002/(SICI)1097-0282(1998)48:2<137::AID-BIP4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  12. Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8301–8305. doi: 10.1073/pnas.87.21.8301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liphardt J., Napthine S., Kontos H., Brierley I. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting. J Mol Biol. 1999 May 7;288(3):321–335. doi: 10.1006/jmbi.1999.2689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  15. Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. J., Hellen C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 1998 Jan 1;12(1):67–83. doi: 10.1101/gad.12.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Philippe C., Eyermann F., Bénard L., Portier C., Ehresmann B., Ehresmann C. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4394–4398. doi: 10.1073/pnas.90.10.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reynolds J. E., Kaminski A., Carroll A. R., Clarke B. E., Rowlands D. J., Jackson R. J. Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA. 1996 Sep;2(9):867–878. [PMC free article] [PubMed] [Google Scholar]
  18. Rijnbrand R., van der Straaten T., van Rijn P. A., Spaan W. J., Bredenbeek P. J. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol. 1997 Jan;71(1):451–457. doi: 10.1128/jvi.71.1.451-457.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sasaki J., Nakashima N. Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1512–1515. doi: 10.1073/pnas.010426997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  21. Tang C. K., Draper D. E. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell. 1989 May 19;57(4):531–536. doi: 10.1016/0092-8674(89)90123-2. [DOI] [PubMed] [Google Scholar]
  22. Wang A. L., Yang H. M., Shen K. A., Wang C. C. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8595–8599. doi: 10.1073/pnas.90.18.8595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang C., Le S. Y., Ali N., Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA. 1995 Jul;1(5):526–537. [PMC free article] [PubMed] [Google Scholar]
  24. Wang C., Siddiqui A. Structure and function of the hepatitis C virus internal ribosome entry site. Curr Top Microbiol Immunol. 1995;203:99–115. doi: 10.1007/978-3-642-79663-0_5. [DOI] [PubMed] [Google Scholar]
  25. Wilson J. E., Pestova T. V., Hellen C. U., Sarnow P. Initiation of protein synthesis from the A site of the ribosome. Cell. 2000 Aug 18;102(4):511–520. doi: 10.1016/s0092-8674(00)00055-6. [DOI] [PubMed] [Google Scholar]
  26. Yu D. C., Wang A. L., Botka C. W., Wang C. C. Protein synthesis in Giardia lamblia may involve interaction between a downstream box (DB) in mRNA and an anti-DB in the 16S-like ribosomal RNA. Mol Biochem Parasitol. 1998 Oct 30;96(1-2):151–165. doi: 10.1016/s0166-6851(98)00126-1. [DOI] [PubMed] [Google Scholar]
  27. Yu D. C., Wang A. L., Wu C. H., Wang C. C. Virus-mediated expression of firefly luciferase in the parasitic protozoan Giardia lamblia. Mol Cell Biol. 1995 Sep;15(9):4867–4872. doi: 10.1128/mcb.15.9.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yu D. C., Wang C. C. Identification of cis-acting signals in the giardiavirus (GLV) genome required for expression of firefly luciferase in Giardia lamblia. RNA. 1996 Aug;2(8):824–834. [PMC free article] [PubMed] [Google Scholar]
  29. ten Dam E. B., Pleij C. W., Bosch L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes. 1990 Jul;4(2):121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van Dijk E. L., Sussenbach J. S., Holthuizen P. E. Distinct RNA structural domains cooperate to maintain a specific cleavage site in the 3'-UTR of IGF-II mRNAs. J Mol Biol. 2000 Jul 14;300(3):449–467. doi: 10.1006/jmbi.2000.3856. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES