Skip to main content
RNA logoLink to RNA
. 2002 May;8(5):647–658. doi: 10.1017/s1355838202029011

In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.

Feng Guo 1, Thomas R Cech 1
PMCID: PMC1370285  PMID: 12022231

Abstract

In vivo selection was used to improve the activity of the Tetrahymena pre-rRNA self-splicing intron in the context of heterologous exons. The intron was engineered into a kanamycin nucleotidyltransferase gene, with the pairing between intron bases and the 5' and 3' splice sites maintained. The initial construct failed to confer kanamycin resistance on Escherichia coli, although the pre-mRNA was active in splicing in vitro. Random mutation libraries were constructed to identify active intron variants in E. coli. All the active mutants sequenced contained mutations disrupting a base-paired region above the paired region P1 (referred to as the P1 extension region or P1ex) that involves the very 5' end of the intron. Subsequent site-directed mutagenesis confirmed that these P1ex mutations are responsible and sufficient to activate the intron splicing in E. coli. Thus, it appears that too strong of a secondary structure in the P1ex element can be inhibitory to splicing in vivo. In vitro splicing assays demonstrated that two P1ex mutant constructs splice six to eight times faster than the designed construct at 40 microM GTP concentration. The relative reaction rates of the mutant constructs compared to the original design are further increased at a lower GTP concentration. Possible mechanisms by which the disrupted P1ex structure could influence splicing rates are discussed. This study emphasizes the value of using libraries of random mutations to improve the activity of ribozymes in heterologous contexts in vivo.

Full Text

The Full Text of this article is available as a PDF (273.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartel D. P., Szostak J. W. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science. 1993 Sep 10;261(5127):1411–1418. doi: 10.1126/science.7690155. [DOI] [PubMed] [Google Scholar]
  2. Bass B. L., Cech T. R. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry. 1986 Aug 12;25(16):4473–4477. doi: 10.1021/bi00364a001. [DOI] [PubMed] [Google Scholar]
  3. Bass B. L., Cech T. R. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. 1984 Apr 26-May 2Nature. 308(5962):820–826. doi: 10.1038/308820a0. [DOI] [PubMed] [Google Scholar]
  4. Beaudry A. A., Joyce G. F. Directed evolution of an RNA enzyme. Science. 1992 Jul 31;257(5070):635–641. doi: 10.1126/science.1496376. [DOI] [PubMed] [Google Scholar]
  5. Been M. D., Cech T. R. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell. 1986 Oct 24;47(2):207–216. doi: 10.1016/0092-8674(86)90443-5. [DOI] [PubMed] [Google Scholar]
  6. Been M. D., Cech T. R. Sites of circularization of the Tetrahymena rRNA IVS are determined by sequence and influenced by position and secondary structure. Nucleic Acids Res. 1985 Dec 9;13(23):8389–8408. doi: 10.1093/nar/13.23.8389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bevilacqua P. C., Johnson K. A., Turner D. H. Cooperative and anticooperative binding to a ribozyme. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8357–8361. doi: 10.1073/pnas.90.18.8357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cech T. R. Self-splicing of group I introns. Annu Rev Biochem. 1990;59:543–568. doi: 10.1146/annurev.bi.59.070190.002551. [DOI] [PubMed] [Google Scholar]
  9. Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
  10. Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies R. W., Waring R. B., Ray J. A., Brown T. A., Scazzocchio C. Making ends meet: a model for RNA splicing in fungal mitochondria. Nature. 1982 Dec 23;300(5894):719–724. doi: 10.1038/300719a0. [DOI] [PubMed] [Google Scholar]
  12. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emerick V. L., Pan J., Woodson S. A. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron. Biochemistry. 1996 Oct 15;35(41):13469–13477. doi: 10.1021/bi960865i. [DOI] [PubMed] [Google Scholar]
  14. Emerick V. L., Woodson S. A. Fingerprinting the folding of a group I precursor RNA. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9675–9679. doi: 10.1073/pnas.91.21.9675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fromant M., Blanquet S., Plateau P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem. 1995 Jan 1;224(1):347–353. doi: 10.1006/abio.1995.1050. [DOI] [PubMed] [Google Scholar]
  16. Hagen M., Cech T. R. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells. EMBO J. 1999 Nov 15;18(22):6491–6500. doi: 10.1093/emboj/18.22.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herschlag D., Cech T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry. 1990 Nov 6;29(44):10172–10180. doi: 10.1021/bi00496a004. [DOI] [PubMed] [Google Scholar]
  18. Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
  19. Jabri E., Cech T. R. In vitro selection of the Naegleria GIR1 ribozyme identifies three base changes that dramatically improve activity. RNA. 1998 Dec;4(12):1481–1492. doi: 10.1017/s1355838298981237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones J. T., Lee S. W., Sullenger B. A. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nat Med. 1996 Jun;2(6):643–648. doi: 10.1038/nm0696-643. [DOI] [PubMed] [Google Scholar]
  21. Lehman N., Joyce G. F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature. 1993 Jan 14;361(6408):182–185. doi: 10.1038/361182a0. [DOI] [PubMed] [Google Scholar]
  22. Liao H., McKenzie T., Hageman R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A. 1986 Feb;83(3):576–580. doi: 10.1073/pnas.83.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Long M. B., Sullenger B. A. Evaluating group I intron catalytic efficiency in mammalian cells. Mol Cell Biol. 1999 Oct;19(10):6479–6487. doi: 10.1128/mcb.19.10.6479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsumura M., Katakura Y., Imanaka T., Aiba S. Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by plasmid pUB110. J Bacteriol. 1984 Oct;160(1):413–420. doi: 10.1128/jb.160.1.413-420.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McConnell T. S., Cech T. R., Herschlag D. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8362–8366. doi: 10.1073/pnas.90.18.8362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Michel F., Hanna M., Green R., Bartel D. P., Szostak J. W. The guanosine binding site of the Tetrahymena ribozyme. Nature. 1989 Nov 23;342(6248):391–395. doi: 10.1038/342391a0. [DOI] [PubMed] [Google Scholar]
  27. Michel F., Jaeger L., Westhof E., Kuras R., Tihy F., Xu M. Q., Shub D. A. Activation of the catalytic core of a group I intron by a remote 3' splice junction. Genes Dev. 1992 Aug;6(8):1373–1385. doi: 10.1101/gad.6.8.1373. [DOI] [PubMed] [Google Scholar]
  28. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  29. Pan T., Uhlenbeck O. C. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry. 1992 Apr 28;31(16):3887–3895. doi: 10.1021/bi00131a001. [DOI] [PubMed] [Google Scholar]
  30. Price J. V., Cech T. R. Coupling of Tetrahymena ribosomal RNA splicing to beta-galactosidase expression in Escherichia coli. Science. 1985 May 10;228(4700):719–722. doi: 10.1126/science.2986286. [DOI] [PubMed] [Google Scholar]
  31. Pyle A. M., McSwiggen J. A., Cech T. R. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8187–8191. doi: 10.1073/pnas.87.21.8187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ritchings B. W., Lewin A. S. Mutational evidence for competition between the P1 and the P10 helices of a mitochondrial group I intron. Nucleic Acids Res. 1992 May 11;20(9):2349–2353. doi: 10.1093/nar/20.9.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roman J., Woodson S. A. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2134–2139. doi: 10.1073/pnas.95.5.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roman J., Woodson S. A. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA. RNA. 1995 Jul;1(5):478–490. [PMC free article] [PubMed] [Google Scholar]
  35. Shaw L. C., Thomas J., Jr, Lewin A. S. The Cbp2 protein suppresses splice site mutations in a group I intron. Nucleic Acids Res. 1996 Sep 1;24(17):3415–3423. doi: 10.1093/nar/24.17.3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Strobel S. A., Cech T. R. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site. Science. 1995 Feb 3;267(5198):675–679. doi: 10.1126/science.7839142. [DOI] [PubMed] [Google Scholar]
  37. Suh E. R., Waring R. B. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron. Mol Cell Biol. 1990 Jun;10(6):2960–2965. doi: 10.1128/mcb.10.6.2960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sullenger B. A., Cech T. R. Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. 1994 Oct 13;371(6498):619–622. doi: 10.1038/371619a0. [DOI] [PubMed] [Google Scholar]
  39. Szewczak A. A., Ortoleva-Donnelly L., Ryder S. P., Moncoeur E., Strobel S. A. A minor groove RNA triple helix within the catalytic core of a group I intron. Nat Struct Biol. 1998 Dec;5(12):1037–1042. doi: 10.1038/4146. [DOI] [PubMed] [Google Scholar]
  40. Treiber D. K., Rook M. S., Zarrinkar P. P., Williamson J. R. Kinetic intermediates trapped by native interactions in RNA folding. Science. 1998 Mar 20;279(5358):1943–1946. doi: 10.1126/science.279.5358.1943. [DOI] [PubMed] [Google Scholar]
  41. Waring R. B., Ray J. A., Edwards S. W., Scazzocchio C., Davies R. W. The Tetrahymena rRNA intron self-splices in E. coli: in vivo evidence for the importance of key base-paired regions of RNA for RNA enzyme function. Cell. 1985 Feb;40(2):371–380. doi: 10.1016/0092-8674(85)90151-5. [DOI] [PubMed] [Google Scholar]
  42. Wayne J., Xu S. Y. Identification of a thermophilic plasmid origin and its cloning within a new Thermus-E. coli shuttle vector. Gene. 1997 Aug 22;195(2):321–328. doi: 10.1016/s0378-1119(97)00191-1. [DOI] [PubMed] [Google Scholar]
  43. Wiesner R. J. Direct quantification of picomolar concentrations of mRNAs by mathematical analysis of a reverse transcription/exponential polymerase chain reaction assay. Nucleic Acids Res. 1992 Nov 11;20(21):5863–5864. doi: 10.1093/nar/20.21.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Woodson S. A., Cech T. R. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry. 1991 Feb 26;30(8):2042–2050. doi: 10.1021/bi00222a006. [DOI] [PubMed] [Google Scholar]
  45. Woodson S. A., Emerick V. L. An alternative helix in the 26S rRNA promotes excision and integration of the Tetrahymena intervening sequence. Mol Cell Biol. 1993 Feb;13(2):1137–1145. doi: 10.1128/mcb.13.2.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Young B., Herschlag D., Cech T. R. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell. 1991 Nov 29;67(5):1007–1019. doi: 10.1016/0092-8674(91)90373-7. [DOI] [PubMed] [Google Scholar]
  47. Zarrinkar P. P., Sullenger B. A. Optimizing the substrate specificity of a group I intron ribozyme. Biochemistry. 1999 Mar 16;38(11):3426–3432. doi: 10.1021/bi982688m. [DOI] [PubMed] [Google Scholar]
  48. Zhang F., Ramsay E. S., Woodson S. A. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. RNA. 1995 May;1(3):284–292. [PMC free article] [PubMed] [Google Scholar]
  49. de Grado M., Lasa I., Berenguer J. Characterization of a plasmid replicative origin from an extreme thermophile. FEMS Microbiol Lett. 1998 Aug 1;165(1):51–57. doi: 10.1111/j.1574-6968.1998.tb13126.x. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES