Skip to main content
RNA logoLink to RNA
. 2002 Jun;8(6):707–717. doi: 10.1017/s1355838202028017

RNAML: a standard syntax for exchanging RNA information.

Allison Waugh 1, Patrick Gendron 1, Russ Altman 1, James W Brown 1, David Case 1, Daniel Gautheret 1, Stephen C Harvey 1, Neocles Leontis 1, John Westbrook 1, Eric Westhof 1, Michael Zuker 1, François Major 1
PMCID: PMC1370290  PMID: 12088144

Abstract

Analyzing a single data set using multiple RNA informatics programs often requires a file format conversion between each pair of programs, significantly hampering productivity. To facilitate the interoperation of these programs, we propose a syntax to exchange basic RNA molecular information. This RNAML syntax allows for the storage and the exchange of information about RNA sequence and secondary and tertiary structures. The syntax permits the description of higher level information about the data including, but not restricted to, base pairs, base triples, and pseudoknots. A class-oriented approach allows us to represent data common to a given set of RNA molecules, such as a sequence alignment and a consensus secondary structure. Documentation about experiments and computations, as well as references to journals and external databases, are included in the syntax. The chief challenge in creating such a syntax was to determine the appropriate scope of usage and to ensure extensibility as new needs will arise. The syntax complies with the eXtensible Markup Language (XML) recommendations, a widely accepted standard for syntax specifications. In addition to the various generic packages that exist to read and interpret XML formats, an XML processor was developed and put in the open-source MC-Core library for nucleic acid and protein structure computer manipulation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achard F., Vaysseix G., Barillot E. XML, bioinformatics and data integration. Bioinformatics. 2001 Feb;17(2):115–125. doi: 10.1093/bioinformatics/17.2.115. [DOI] [PubMed] [Google Scholar]
  2. Bada M. A., Altman R. B. Computational modeling of structural experimental data. Methods Enzymol. 2000;317:470–491. doi: 10.1016/s0076-6879(00)17030-2. [DOI] [PubMed] [Google Scholar]
  3. Berman H. M., Olson W. K., Beveridge D. L., Westbrook J., Gelbin A., Demeny T., Hsieh S. H., Srinivasan A. R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992 Sep;63(3):751–759. doi: 10.1016/S0006-3495(92)81649-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J. W. The Ribonuclease P Database. Nucleic Acids Res. 1999 Jan 1;27(1):314–314. doi: 10.1093/nar/27.1.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fenyö D. The Biopolymer Markup Language. Bioinformatics. 1999 Apr;15(4):339–340. doi: 10.1093/bioinformatics/15.4.339. [DOI] [PubMed] [Google Scholar]
  7. Gendron P., Lemieux S., Major F. Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol. 2001 May 18;308(5):919–936. doi: 10.1006/jmbi.2001.4626. [DOI] [PubMed] [Google Scholar]
  8. Leontis N. B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001 Apr;7(4):499–512. doi: 10.1017/s1355838201002515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Limbach P. A., Crain P. F., McCloskey J. A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994 Jun 25;22(12):2183–2196. doi: 10.1093/nar/22.12.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T., Jr, Saxman P. R., Stredwick J. M., Garrity G. M., Li B., Olsen G. J., Pramanik S. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 2000 Jan 1;28(1):173–174. doi: 10.1093/nar/28.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E., Cedergren R. The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science. 1991 Sep 13;253(5025):1255–1260. doi: 10.1126/science.1716375. [DOI] [PubMed] [Google Scholar]
  12. Massire C., Westhof E. MANIP: an interactive tool for modelling RNA. J Mol Graph Model. 1998 Aug-Dec;16(4-6):197-205, 255-7. doi: 10.1016/s1093-3263(98)80004-1. [DOI] [PubMed] [Google Scholar]
  13. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  14. Stevens R., Miller C. Wrapping and interoperating bioinformatics resources using CORBA. Brief Bioinform. 2000 Feb;1(1):9–21. doi: 10.1093/bib/1.1.9. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES