Skip to main content
RNA logoLink to RNA
. 2002 Jun;8(6):740–751. doi: 10.1017/s1355838202022082

Phylogenetic analysis of the structure of RNase MRP RNA in yeasts.

Xing Li 1, Daniel N Frank 1, Norman Pace 1, Janice M Zengel 1, Lasse Lindahl 1
PMCID: PMC1370293  PMID: 12088147

Abstract

RNase MRP is a ribonucleoprotein enzyme involved in processing precursor rRNA in eukaryotes. To facilitate our structure-function analysis of RNase MRP from Saccharomyces cerevisiae, we have determined the likely secondary structure of the RNA component by a phylogenetic approach in which we sequenced all or part of the RNase MRP RNAs from 17 additional species of the Saccharomycetaceae family. The structure deduced from these sequences contains the helices previously suggested to be common to the RNA subunit of RNase MRP and the related RNA subunit of RNase P, an enzyme cleaving tRNA precursors. However, outside this common region, the structure of RNase MRP RNA determined here differs from a previously proposed universal structure for RNase MRPs. Chemical and enzymatic structure probing analyses were consistent with our revised secondary structure. Comparison of all known RNase MRP RNA sequences revealed three regions with highly conserved nucleotides. Two of these regions are part of a helix implicated in RNA catalysis in RNase P, suggesting that RNase MRP may cleave rRNA using a similar catalytic mechanism.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  2. Cai T., Reilly T. R., Cerio M., Schmitt M. E. Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Mol Cell Biol. 1999 Nov;19(11):7857–7869. doi: 10.1128/mcb.19.11.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chamberlain J. R., Lee Y., Lane W. S., Engelke D. R. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev. 1998 Jun 1;12(11):1678–1690. doi: 10.1101/gad.12.11.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen J. L., Pace N. R. Identification of the universally conserved core of ribonuclease P RNA. RNA. 1997 Jun;3(6):557–560. [PMC free article] [PubMed] [Google Scholar]
  5. Chu S., Archer R. H., Zengel J. M., Lindahl L. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):659–663. doi: 10.1073/pnas.91.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chu S., Zengel J. M., Lindahl L. A novel protein shared by RNase MRP and RNase P. RNA. 1997 Apr;3(4):382–391. [PMC free article] [PubMed] [Google Scholar]
  7. Dichtl B., Tollervey D. Pop3p is essential for the activity of the RNase MRP and RNase P ribonucleoproteins in vivo. EMBO J. 1997 Jan 15;16(2):417–429. doi: 10.1093/emboj/16.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forster A. C., Altman S. Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell. 1990 Aug 10;62(3):407–409. doi: 10.1016/0092-8674(90)90003-w. [DOI] [PubMed] [Google Scholar]
  10. Frank D. N., Adamidi C., Ehringer M. A., Pitulle C., Pace N. R. Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA. RNA. 2000 Dec;6(12):1895–1904. doi: 10.1017/s1355838200001461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geiser M., Cèbe R., Drewello D., Schmitz R. Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. Biotechniques. 2001 Jul;31(1):88-90, 92. doi: 10.2144/01311st05. [DOI] [PubMed] [Google Scholar]
  12. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  13. Haas E. S., Armbruster D. W., Vucson B. M., Daniels C. J., Brown J. W. Comparative analysis of ribonuclease P RNA structure in Archaea. Nucleic Acids Res. 1996 Apr 1;24(7):1252–1259. doi: 10.1093/nar/24.7.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobson M. R., Cao L. G., Wang Y. L., Pederson T. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol. 1995 Dec;131(6 Pt 2):1649–1658. doi: 10.1083/jcb.131.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kiss T., Marshallsay C., Filipowicz W. 7-2/MRP RNAs in plant and mammalian cells: association with higher order structures in the nucleolus. EMBO J. 1992 Oct;11(10):3737–3746. doi: 10.1002/j.1460-2075.1992.tb05459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee D. Y., Clayton D. A. RNase mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Dev. 1997 Mar 1;11(5):582–592. doi: 10.1101/gad.11.5.582. [DOI] [PubMed] [Google Scholar]
  17. Lindahl L., Archer R. H., Zengel J. M. A new rRNA processing mutant of Saccharomyces cerevisiae. Nucleic Acids Res. 1992 Jan 25;20(2):295–301. doi: 10.1093/nar/20.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindahl L., Fretz S., Epps N., Zengel J. M. Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. RNA. 2000 May;6(5):653–658. doi: 10.1017/s1355838200992574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lindahl L., Zengel J. M. RNase MRP and rRNA processing. Mol Biol Rep. 1995;22(2-3):69–73. doi: 10.1007/BF00988708. [DOI] [PubMed] [Google Scholar]
  20. Liu M. H., Yuan Y., Reddy R. Human RNaseP RNA and nucleolar 7-2 RNA share conserved 'To' antigen-binding domains. Mol Cell Biochem. 1994 Jan 12;130(1):75–82. doi: 10.1007/BF01084270. [DOI] [PubMed] [Google Scholar]
  21. Loria A., Pan T. Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res. 2001 May 1;29(9):1892–1897. doi: 10.1093/nar/29.9.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lygerou Z., Allmang C., Tollervey D., Séraphin B. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science. 1996 Apr 12;272(5259):268–270. doi: 10.1126/science.272.5259.268. [DOI] [PubMed] [Google Scholar]
  23. Lygerou Z., Mitchell P., Petfalski E., Séraphin B., Tollervey D. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 1994 Jun 15;8(12):1423–1433. doi: 10.1101/gad.8.12.1423. [DOI] [PubMed] [Google Scholar]
  24. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  25. Morrissey J. P., Tollervey D. Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends Biochem Sci. 1995 Feb;20(2):78–82. doi: 10.1016/s0968-0004(00)88962-8. [DOI] [PubMed] [Google Scholar]
  26. Pagán-Ramos E., Lee Y., Engelke D. R. Mutational analysis of Saccharomyces cerevisiae nuclear RNase P: randomization of universally conserved positions in the RNA subunit. RNA. 1996 May;2(5):441–451. [PMC free article] [PubMed] [Google Scholar]
  27. Pagán-Ramos E., Tranguch A. J., Kindelberger D. W., Engelke D. R. Replacement of the Saccharomyces cerevisiae RPR1 gene with heterologous RNase P RNA genes. Nucleic Acids Res. 1994 Jan 25;22(2):200–207. doi: 10.1093/nar/22.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paluh J. L., Clayton D. A. Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P. Yeast. 1995 Oct;11(13):1249–1264. doi: 10.1002/yea.320111305. [DOI] [PubMed] [Google Scholar]
  29. Philippsen P., Stotz A., Scherf C. DNA of Saccharomyces cerevisiae. Methods Enzymol. 1991;194:169–182. doi: 10.1016/0076-6879(91)94014-4. [DOI] [PubMed] [Google Scholar]
  30. Pitulle C., Garcia-Paris M., Zamudio K. R., Pace N. R. Comparative structure analysis of vertebrate ribonuclease P RNA. Nucleic Acids Res. 1998 Jul 15;26(14):3333–3339. doi: 10.1093/nar/26.14.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pluk H., van Eenennaam H., Rutjes S. A., Pruijn G. J., van Venrooij W. J. RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. RNA. 1999 Apr;5(4):512–524. doi: 10.1017/s1355838299982079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reddy R., Shimba S. Structural and functional similarities between MRP and RNase P. Mol Biol Rep. 1995;22(2-3):81–85. doi: 10.1007/BF00988710. [DOI] [PubMed] [Google Scholar]
  33. Reilly T. H., Schmitt M. E. The yeast, Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family. Mol Biol Rep. 1995;22(2-3):87–93. doi: 10.1007/BF00988711. [DOI] [PubMed] [Google Scholar]
  34. Reimer G. Autoantibodies against nuclear, nucleolar, and mitochondrial antigens in systemic sclerosis (scleroderma). Rheum Dis Clin North Am. 1990 Feb;16(1):169–183. [PubMed] [Google Scholar]
  35. Reimer G., Raska I., Scheer U., Tan E. M. Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus. Exp Cell Res. 1988 May;176(1):117–128. doi: 10.1016/0014-4827(88)90126-7. [DOI] [PubMed] [Google Scholar]
  36. Ridanpä M., van Eenennaam H., Pelin K., Chadwick R., Johnson C., Yuan B., vanVenrooij W., Pruijn G., Salmela R., Rockas S. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 2001 Jan 26;104(2):195–203. doi: 10.1016/s0092-8674(01)00205-7. [DOI] [PubMed] [Google Scholar]
  37. Schmitt M. E., Bennett J. L., Dairaghi D. J., Clayton D. A. Secondary structure of RNase MRP RNA as predicted by phylogenetic comparison. FASEB J. 1993 Jan;7(1):208–213. doi: 10.1096/fasebj.7.1.7678563. [DOI] [PubMed] [Google Scholar]
  38. Schmitt M. E., Clayton D. A. Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. Genes Dev. 1994 Nov 1;8(21):2617–2628. doi: 10.1101/gad.8.21.2617. [DOI] [PubMed] [Google Scholar]
  39. Schmitt M. E., Clayton D. A. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Dec;13(12):7935–7941. doi: 10.1128/mcb.13.12.7935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schmitt M. E., Clayton D. A. Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNase MRP RNA and essential for cell viability. Genes Dev. 1992 Oct;6(10):1975–1985. doi: 10.1101/gad.6.10.1975. [DOI] [PubMed] [Google Scholar]
  41. Schmitt M. E. Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP. J Mol Biol. 1999 Oct 1;292(4):827–836. doi: 10.1006/jmbi.1999.3116. [DOI] [PubMed] [Google Scholar]
  42. Shadel G. S., Buckenmeyer G. A., Clayton D. A., Schmitt M. E. Mutational analysis of the RNA component of Saccharomyces cerevisiae RNase MRP reveals distinct nuclear phenotypes. Gene. 2000 Mar 7;245(1):175–184. doi: 10.1016/s0378-1119(00)00013-5. [DOI] [PubMed] [Google Scholar]
  43. Shen P., Zengel J. M., Lindahl L. Secondary structure of the leader transcript from the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res. 1988 Sep 26;16(18):8905–8924. doi: 10.1093/nar/16.18.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stolc V., Altman S. Rpp1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae. Genes Dev. 1997 Nov 1;11(21):2926–2937. doi: 10.1101/gad.11.21.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stolc V., Katz A., Altman S. Rpp2, an essential protein subunit of nuclear RNase P, is required for processing of precursor tRNAs and 35S precursor rRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6716–6721. doi: 10.1073/pnas.95.12.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thomas B. C., Chamberlain J., Engelke D. R., Gegenheimer P. Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. RNA. 2000 Apr;6(4):554–562. doi: 10.1017/s1355838200991477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tranguch A. J., Engelke D. R. Comparative structural analysis of nuclear RNase P RNAs from yeast. J Biol Chem. 1993 Jul 5;268(19):14045–14055. [PubMed] [Google Scholar]
  48. Xiao S., Houser-Scott F., Engelke D. R. Eukaryotic ribonuclease P: increased complexity to cope with the nuclear pre-tRNA pathway. J Cell Physiol. 2001 Apr;187(1):11–20. doi: 10.1002/1097-4652(200104)187:1<11::AID-JCP1055>3.0.CO;2-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yuan Y., Tan E., Reddy R. The 40-kilodalton to autoantigen associates with nucleotides 21 to 64 of human mitochondrial RNA processing/7-2 RNA in vitro. Mol Cell Biol. 1991 Oct;11(10):5266–5274. doi: 10.1128/mcb.11.10.5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ziehler W. A., Morris J., Scott F. H., Millikin C., Engelke D. R. An essential protein-binding domain of nuclear RNase P RNA. RNA. 2001 Apr;7(4):565–575. doi: 10.1017/s1355838201001996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. van Eenennaam H., Jarrous N., van Venrooij W. J., Pruijn G. J. Architecture and function of the human endonucleases RNase P and RNase MRP. IUBMB Life. 2000 Apr;49(4):265–272. doi: 10.1080/15216540050033113. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES