Skip to main content
RNA logoLink to RNA
. 2002 Jun;8(6):798–815. doi: 10.1017/s1355838202025050

Characterization of interactions among the Cef1p-Prp19p-associated splicing complex.

Melanie D Ohi 1, Kathleen L Gould 1
PMCID: PMC1370298  PMID: 12088152

Abstract

Schizosaccharomyces pombe (Sp) Cdc5p and its Saccharomyces cerevisiae (Sc) ortholog, Cef1p, are essential components of the spliceosome. In S. cerevisiae, a subcomplex of the spliceosome that includes Cef1p can be isolated on its own; this has been termed the nineteen complex (Ntc) because it contains Prp19p. Components of the Ntc include Cef1p, Snt309p, Syf2p/Ntc31p, Ntc30p/lsy1p, Ntc20p and at least six unidentified proteins. We recently identified approximately 30 proteins that copurified with Cdc5p and Cef1p. Previously unidentified S. pombe proteins in this purification were called Cwfs for complexed with five and novel S. cerevisiae proteins were called Cwcs for complexed with Cef1p. Using these proteomics data coupled with available information regarding Ntc composition, we have investigated protein identities and interactions among Ntc components. Our data indicate that Cwc2p, Prp46p, Clf1p, and Syf1p most likely represent Ntc40p, Ntc50p, Ntc77p, and Ntc90p, respectively. We show that Sc Cwc2p interacts with Prp19p and is involved in pre-mRNA splicing. Sp cwf2+, the homolog of Sc CWC2, is allelic with the previously identified Sp prp3+. We present evidence that Sp Cwf7p, an essential protein with obvious homologs in many eukaryotes but not S. cerevisiae, is a functional counterpart of Sc Snt309p and binds Sp Cwf8p (a homolog of Sc Prp19p). Further, our data indicate that a mutation in the U-box of Prp19p disrupts these numerous protein interactions causing Cef1p degradation and Ntc instability.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajuh P., Kuster B., Panov K., Zomerdijk J. C., Mann M., Lamond A. I. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 2000 Dec 1;19(23):6569–6581. doi: 10.1093/emboj/19.23.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ajuh P., Sleeman J., Chusainow J., Lamond A. I. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem. 2001 Sep 5;276(45):42370–42381. doi: 10.1074/jbc.M105453200. [DOI] [PubMed] [Google Scholar]
  3. Aravind L., Koonin E. V. The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol. 2000 Feb 24;10(4):R132–R134. doi: 10.1016/s0960-9822(00)00398-5. [DOI] [PubMed] [Google Scholar]
  4. Ben Yehuda S., Dix I., Russell C. S., Levy S., Beggs J. D., Kupiec M. Identification and functional analysis of hPRP17, the human homologue of the PRP17/CDC40 yeast gene involved in splicing and cell cycle control. RNA. 1998 Oct;4(10):1304–1312. doi: 10.1017/s1355838298980712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Yehuda S., Dix I., Russell C. S., McGarvey M., Beggs J. D., Kupiec M. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics. 2000 Dec;156(4):1503–1517. doi: 10.1093/genetics/156.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ben-Yehuda S., Russell C. S., Dix I., Beggs J. D., Kupiec M. Extensive genetic interactions between PRP8 and PRP17/CDC40, two yeast genes involved in pre-mRNA splicing and cell cycle progression. Genetics. 2000 Jan;154(1):61–71. doi: 10.1093/genetics/154.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bernstein H. S., Coughlin S. R. A mammalian homolog of fission yeast Cdc5 regulates G2 progression and mitotic entry. J Biol Chem. 1998 Feb 20;273(8):4666–4671. doi: 10.1074/jbc.273.8.4666. [DOI] [PubMed] [Google Scholar]
  8. Bernstein H. S., Coughlin S. R. Pombe Cdc5-related protein. A putative human transcription factor implicated in mitogen-activated signaling. J Biol Chem. 1997 Feb 28;272(9):5833–5837. doi: 10.1074/jbc.272.9.5833. [DOI] [PubMed] [Google Scholar]
  9. Berry L. D., Feoktistova A., Wright M. D., Gould K. L. The schizosaccharomyces pombe dim1(+) gene interacts with the anaphase-promoting complex or cyclosome (APC/C) component lid1(+) and is required for APC/C function. Mol Cell Biol. 1999 Apr;19(4):2535–2546. doi: 10.1128/mcb.19.4.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burns C. G., Ohi R., Krainer A. R., Gould K. L. Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13789–13794. doi: 10.1073/pnas.96.24.13789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burns C. Geoffrey, Ohi Ryoma, Mehta Sapna, O'Toole Eileen T., Winey Mark, Clark Tyson A., Sugnet Charles W., Ares Manuel, Jr, Gould Kathleen L. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol. 2002 Feb;22(3):801–815. doi: 10.1128/MCB.22.3.801-815.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen C. H., Tsai W. Y., Chen H. R., Wang C. H., Cheng S. C. Identification and characterization of two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. J Biol Chem. 2001 Jan 5;276(1):488–494. doi: 10.1074/jbc.M006958200. [DOI] [PubMed] [Google Scholar]
  13. Chen Chun-Hong, Yu Wan-Chin, Tsao Twee Y., Wang Lian-Yung, Chen Hau-Ren, Lin Jui-Yen, Tsai Wei-Yü, Cheng Soo-Chen. Functional and physical interactions between components of the Prp19p-associated complex. Nucleic Acids Res. 2002 Feb 15;30(4):1029–1037. doi: 10.1093/nar/30.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen H. R., Jan S. P., Tsao T. Y., Sheu Y. J., Banroques J., Cheng S. C. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol. 1998 Apr;18(4):2196–2204. doi: 10.1128/mcb.18.4.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen H. R., Tsao T. Y., Chen C. H., Tsai W. Y., Her L. S., Hsu M. M., Cheng S. C. Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5406–5411. doi: 10.1073/pnas.96.10.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cheng S. C., Tarn W. Y., Tsao T. Y., Abelson J. PRP19: a novel spliceosomal component. Mol Cell Biol. 1993 Mar;13(3):1876–1882. doi: 10.1128/mcb.13.3.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Das R., Zhou Z., Reed R. Functional association of U2 snRNP with the ATP-independent spliceosomal complex E. Mol Cell. 2000 May;5(5):779–787. doi: 10.1016/s1097-2765(00)80318-4. [DOI] [PubMed] [Google Scholar]
  18. Dash A. B., Orrico F. C., Ness S. A. The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb. Genes Dev. 1996 Aug 1;10(15):1858–1869. doi: 10.1101/gad.10.15.1858. [DOI] [PubMed] [Google Scholar]
  19. Dix I., Russell C. S., O'Keefe R. T., Newman A. J., Beggs J. D. Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. RNA. 1998 Dec;4(12):1675–1686. doi: 10.1017/s1355838298412998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dohmen R. J., Wu P., Varshavsky A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science. 1994 Mar 4;263(5151):1273–1276. doi: 10.1126/science.8122109. [DOI] [PubMed] [Google Scholar]
  21. Feng D. F., Doolittle R. F. Progressive alignment of amino acid sequences and construction of phylogenetic trees from them. Methods Enzymol. 1996;266:368–382. doi: 10.1016/s0076-6879(96)66023-6. [DOI] [PubMed] [Google Scholar]
  22. Fikes J. D., Becker D. M., Winston F., Guarente L. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature. 1990 Jul 19;346(6281):291–294. doi: 10.1038/346291a0. [DOI] [PubMed] [Google Scholar]
  23. Frangioni J. V., Neel B. G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993 Apr;210(1):179–187. doi: 10.1006/abio.1993.1170. [DOI] [PubMed] [Google Scholar]
  24. Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M., Michon Anne-Marie, Cruciat Cristina-Maria. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. doi: 10.1038/415141a. [DOI] [PubMed] [Google Scholar]
  25. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. doi: 10.1002/yea.320110408. [DOI] [PubMed] [Google Scholar]
  26. Gotzmann J., Gerner C., Meissner M., Holzmann K., Grimm R., Mikulits W., Sauermann G. hNMP 200: a novel human common nuclear matrix protein combining structural and regulatory functions. Exp Cell Res. 2000 Nov 25;261(1):166–179. doi: 10.1006/excr.2000.5025. [DOI] [PubMed] [Google Scholar]
  27. Gould K. L., Moreno S., Owen D. J., Sazer S., Nurse P. Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 1991 Nov;10(11):3297–3309. doi: 10.1002/j.1460-2075.1991.tb04894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Groenen P. M., Vanderlinden G., Devriendt K., Fryns J. P., Van de Ven W. J. Rearrangement of the human CDC5L gene by a t(6;19)(p21;q13.1) in a patient with multicystic renal dysplasia. Genomics. 1998 Apr 15;49(2):218–229. doi: 10.1006/geno.1998.5254. [DOI] [PubMed] [Google Scholar]
  29. Hatakeyama S., Yada M., Matsumoto M., Ishida N., Nakayama K. I. U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem. 2001 Jul 2;276(35):33111–33120. doi: 10.1074/jbc.M102755200. [DOI] [PubMed] [Google Scholar]
  30. Hirayama T., Shinozaki K. A cdc5+ homolog of a higher plant, Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13371–13376. doi: 10.1073/pnas.93.23.13371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jackson P. K., Eldridge A. G., Freed E., Furstenthal L., Hsu J. Y., Kaiser B. K., Reimann J. D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 2000 Oct;10(10):429–439. doi: 10.1016/s0962-8924(00)01834-1. [DOI] [PubMed] [Google Scholar]
  32. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jiang J., Ballinger C. A., Wu Y., Dai Q., Cyr D. M., Höhfeld J., Patterson C. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem. 2001 Sep 13;276(46):42938–42944. doi: 10.1074/jbc.M101968200. [DOI] [PubMed] [Google Scholar]
  34. Koegl M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell. 1999 Mar 5;96(5):635–644. doi: 10.1016/s0092-8674(00)80574-7. [DOI] [PubMed] [Google Scholar]
  35. Krämer A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem. 1996;65:367–409. doi: 10.1146/annurev.bi.65.070196.002055. [DOI] [PubMed] [Google Scholar]
  36. Labib K., Diffley J. F., Kearsey S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol. 1999 Nov;1(7):415–422. doi: 10.1038/15649. [DOI] [PubMed] [Google Scholar]
  37. Link A. J., Eng J., Schieltz D. M., Carmack E., Mize G. J., Morris D. R., Garvik B. M., Yates J. R., 3rd Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999 Jul;17(7):676–682. doi: 10.1038/10890. [DOI] [PubMed] [Google Scholar]
  38. Maroney P. A., Romfo C. M., Nilsen T. W. Functional recognition of 5' splice site by U4/U6.U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol Cell. 2000 Aug;6(2):317–328. doi: 10.1016/s1097-2765(00)00032-0. [DOI] [PubMed] [Google Scholar]
  39. McDonald W. H., Ohi R., Smelkova N., Frendewey D., Gould K. L. Myb-related fission yeast cdc5p is a component of a 40S snRNP-containing complex and is essential for pre-mRNA splicing. Mol Cell Biol. 1999 Aug;19(8):5352–5362. doi: 10.1128/mcb.19.8.5352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Murray H. L., Jarrell K. A. Flipping the switch to an active spliceosome. Cell. 1999 Mar 5;96(5):599–602. doi: 10.1016/s0092-8674(00)80568-1. [DOI] [PubMed] [Google Scholar]
  41. Neubauer G., King A., Rappsilber J., Calvio C., Watson M., Ajuh P., Sleeman J., Lamond A., Mann M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998 Sep;20(1):46–50. doi: 10.1038/1700. [DOI] [PubMed] [Google Scholar]
  42. Ohi Melanie D., Link Andrew J., Ren Liping, Jennings Jennifer L., McDonald W. Hayes, Gould Kathleen L. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol. 2002 Apr;22(7):2011–2024. doi: 10.1128/MCB.22.7.2011-2024.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ohi R., Feoktistova A., McCann S., Valentine V., Look A. T., Lipsick J. S., Gould K. L. Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Mol Cell Biol. 1998 Jul;18(7):4097–4108. doi: 10.1128/mcb.18.7.4097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pickart C. M. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–533. doi: 10.1146/annurev.biochem.70.1.503. [DOI] [PubMed] [Google Scholar]
  45. Potashkin J., Kim D., Fons M., Humphrey T., Frendewey D. Cell-division-cycle defects associated with fission yeast pre-mRNA splicing mutants. Curr Genet. 1998 Sep;34(3):153–163. doi: 10.1007/s002940050381. [DOI] [PubMed] [Google Scholar]
  46. Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Séraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999 Oct;17(10):1030–1032. doi: 10.1038/13732. [DOI] [PubMed] [Google Scholar]
  47. Russell C. S., Ben-Yehuda S., Dix I., Kupiec M., Beggs J. D. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA. 2000 Nov;6(11):1565–1572. doi: 10.1017/s1355838200000984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sakashita E., Sakamoto H. Protein-RNA and protein-protein interactions of the Drosophila sex-lethal mediated by its RNA-binding domains. J Biochem. 1996 Nov;120(5):1028–1033. doi: 10.1093/oxfordjournals.jbchem.a021495. [DOI] [PubMed] [Google Scholar]
  49. Samuels M., Deshpande G., Schedl P. Activities of the Sex-lethal protein in RNA binding and protein:protein interactions. Nucleic Acids Res. 1998 Jun 1;26(11):2625–2637. doi: 10.1093/nar/26.11.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shamoo Y., Abdul-Manan N., Williams K. R. Multiple RNA binding domains (RBDs) just don't add up. Nucleic Acids Res. 1995 Mar 11;23(5):725–728. doi: 10.1093/nar/23.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Smith T. F., Gaitatzes C., Saxena K., Neer E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999 May;24(5):181–185. doi: 10.1016/s0968-0004(99)01384-5. [DOI] [PubMed] [Google Scholar]
  52. Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998 Feb 6;92(3):315–326. doi: 10.1016/s0092-8674(00)80925-3. [DOI] [PubMed] [Google Scholar]
  53. Stevens Scott W., Ryan Daniel E., Ge Helen Y., Moore Roger E., Young Mary K., Lee Terry D., Abelson John. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell. 2002 Jan;9(1):31–44. doi: 10.1016/s1097-2765(02)00436-7. [DOI] [PubMed] [Google Scholar]
  54. Stukenberg P. T., Lustig K. D., McGarry T. J., King R. W., Kuang J., Kirschner M. W. Systematic identification of mitotic phosphoproteins. Curr Biol. 1997 May 1;7(5):338–348. doi: 10.1016/s0960-9822(06)00157-6. [DOI] [PubMed] [Google Scholar]
  55. Tarn W. Y., Hsu C. H., Huang K. T., Chen H. R., Kao H. Y., Lee K. R., Cheng S. C. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 1994 May 15;13(10):2421–2431. doi: 10.1002/j.1460-2075.1994.tb06527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tarn W. Y., Lee K. R., Cheng S. C. The yeast PRP19 protein is not tightly associated with small nuclear RNAs, but appears to associate with the spliceosome after binding of U2 to the pre-mRNA and prior to formation of the functional spliceosome. Mol Cell Biol. 1993 Mar;13(3):1883–1891. doi: 10.1128/mcb.13.3.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tarn W. Y., Lee K. R., Cheng S. C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10821–10825. doi: 10.1073/pnas.90.22.10821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tasto J. J., Carnahan R. H., McDonald W. H., Gould K. L. Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast. 2001 May;18(7):657–662. doi: 10.1002/yea.713. [DOI] [PubMed] [Google Scholar]
  59. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tsai W. Y., Chow Y. T., Chen H. R., Huang K. T., Hong R. I., Jan S. P., Kuo N. Y., Tsao T. Y., Chen C. H., Cheng S. C. Cef1p is a component of the Prp19p-associated complex and essential for pre-mRNA splicing. J Biol Chem. 1999 Apr 2;274(14):9455–9462. doi: 10.1074/jbc.274.14.9455. [DOI] [PubMed] [Google Scholar]
  61. Tyers M., Jorgensen P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev. 2000 Feb;10(1):54–64. doi: 10.1016/s0959-437x(99)00049-0. [DOI] [PubMed] [Google Scholar]
  62. Verhasselt P., Volckaert G. Sequence analysis of a 37.6 kbp cosmid clone from the right arm of Saccharomyces cerevisiae chromosome XII, carrying YAP3, HOG1, SNR6, tRNA-Arg3 and 23 new open reading frames, among which several homologies to proteins involved in cell division control and to mammalian growth factors and other animal proteins are found. Yeast. 1997 Mar 15;13(3):241–250. doi: 10.1002/(SICI)1097-0061(19970315)13:3<241::AID-YEA61>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  63. Zhang K., Smouse D., Perrimon N. The crooked neck gene of Drosophila contains a motif found in a family of yeast cell cycle genes. Genes Dev. 1991 Jun;5(6):1080–1091. doi: 10.1101/gad.5.6.1080. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES