Skip to main content
RNA logoLink to RNA
. 2002 Jun;8(6):824–841. doi: 10.1017/s1355838202554066

Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus.

Andrew Tuplin 1, Jonny Wood 1, David J Evans 1, Arvind H Patel 1, Peter Simmonds 1
PMCID: PMC1370300  PMID: 12088154

Abstract

The existence and functional importance of RNA secondary structure in the replication of positive-stranded RNA viruses is increasingly recognized. We applied several computational methods to detect RNA secondary structure in the coding region of hepatitis C virus (HCV), including thermodynamic prediction, calculation of free energy on folding, and a newly developed method to scan sequences for covariant sites and associated secondary structures using a parsimony-based algorithm. Each of the prediction methods provided evidence for complex RNA folding in the core- and NS5B-encoding regions of the genome. The positioning of covariant sites and associated predicted stem-loop structures coincided with thermodynamic predictions of RNA base pairing, and localized precisely in parts of the genome with marked suppression of variability at synonymous sites. Combined, there was evidence for a total of six evolutionarily conserved stem-loop structures in the NS5B-encoding region and two in the core gene. The virus most closely related to HCV, GB virus-B (GBV-B) also showed evidence for similar internal base pairing in its coding region, although predictions of secondary structures were limited by the absence of comparative sequence data for this virus. While the role(s) of stem-loops in the coding region of HCV and GBV-B are currently unknown, the structure predictions in this study could provide the starting point for functional investigations using recently developed self-replicating clones of HCV.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee R., Dasgupta A. Specific interaction of hepatitis C virus protease/helicase NS3 with the 3'-terminal sequences of viral positive- and negative-strand RNA. J Virol. 2001 Feb;75(4):1708–1721. doi: 10.1128/JVI.75.4.1708-1721.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blight K. J., Kolykhalov A. A., Rice C. M. Efficient initiation of HCV RNA replication in cell culture. Science. 2000 Dec 8;290(5498):1972–1974. doi: 10.1126/science.290.5498.1972. [DOI] [PubMed] [Google Scholar]
  3. Brierley I., Jenner A. J., Inglis S. C. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1992 Sep 20;227(2):463–479. doi: 10.1016/0022-2836(92)90901-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989 Apr 21;244(4902):359–362. doi: 10.1126/science.2523562. [DOI] [PubMed] [Google Scholar]
  5. Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989 Apr 21;244(4902):359–362. doi: 10.1126/science.2523562. [DOI] [PubMed] [Google Scholar]
  6. Cuceanu N. M., Tuplin A., Simmonds P. Evolutionarily conserved RNA secondary structures in coding and non-coding sequences at the 3' end of the hepatitis G virus/GB-virus C genome. J Gen Virol. 2001 Apr;82(Pt 4):713–722. doi: 10.1099/0022-1317-82-4-713. [DOI] [PubMed] [Google Scholar]
  7. Giedroc D. P., Theimer C. A., Nixon P. L. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol. 2000 Apr 28;298(2):167–185. doi: 10.1006/jmbi.2000.3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodfellow I., Chaudhry Y., Richardson A., Meredith J., Almond J. W., Barclay W., Evans D. J. Identification of a cis-acting replication element within the poliovirus coding region. J Virol. 2000 May;74(10):4590–4600. doi: 10.1128/jvi.74.10.4590-4600.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Han J. H., Houghton M. Group specific sequences and conserved secondary structures at the 3' end of HCV genome and its implication for viral replication. Nucleic Acids Res. 1992 Jul 11;20(13):3520–3520. doi: 10.1093/nar/20.13.3520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofacker I. L., Fekete M., Flamm C., Huynen M. A., Rauscher S., Stolorz P. E., Stadler P. F. Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res. 1998 Aug 15;26(16):3825–3836. doi: 10.1093/nar/26.16.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Honda M., Brown E. A., Lemon S. M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA. 1996 Oct;2(10):955–968. [PMC free article] [PubMed] [Google Scholar]
  12. Honda M., Ping L. H., Rijnbrand R. C., Amphlett E., Clarke B., Rowlands D., Lemon S. M. Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology. 1996 Aug 1;222(1):31–42. doi: 10.1006/viro.1996.0395. [DOI] [PubMed] [Google Scholar]
  13. Honda M., Rijnbrand R., Abell G., Kim D., Lemon S. M. Natural variation in translational activities of the 5' nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site. J Virol. 1999 Jun;73(6):4941–4951. doi: 10.1128/jvi.73.6.4941-4951.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ina Y., Mizokami M., Ohba K., Gojobori T. Reduction of synonymous substitutions in the core protein gene of hepatitis C virus. J Mol Evol. 1994 Jan;38(1):50–56. doi: 10.1007/BF00175495. [DOI] [PubMed] [Google Scholar]
  15. Ito T., Lai M. M. An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3'-untranslated sequence. Virology. 1999 Feb 15;254(2):288–296. doi: 10.1006/viro.1998.9541. [DOI] [PubMed] [Google Scholar]
  16. Ito T., Tahara S. M., Lai M. M. The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol. 1998 Nov;72(11):8789–8796. doi: 10.1128/jvi.72.11.8789-8796.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim Y. N., Makino S. Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal. J Virol. 1995 Aug;69(8):4963–4971. doi: 10.1128/jvi.69.8.4963-4971.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuo G., Choo Q. L., Alter H. J., Gitnick G. L., Redeker A. G., Purcell R. H., Miyamura T., Dienstag J. L., Alter M. J., Stevens C. E. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989 Apr 21;244(4902):362–364. doi: 10.1126/science.2496467. [DOI] [PubMed] [Google Scholar]
  19. Lobert P. E., Escriou N., Ruelle J., Michiels T. A coding RNA sequence acts as a replication signal in cardioviruses. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11560–11565. doi: 10.1073/pnas.96.20.11560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lohmann V., Körner F., Koch J., Herian U., Theilmann L., Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999 Jul 2;285(5424):110–113. doi: 10.1126/science.285.5424.110. [DOI] [PubMed] [Google Scholar]
  21. Lu H. H., Wimmer E. Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1412–1417. doi: 10.1073/pnas.93.4.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  23. Matsufuji S., Matsufuji T., Wills N. M., Gesteland R. F., Atkins J. F. Reading two bases twice: mammalian antizyme frameshifting in yeast. EMBO J. 1996 Mar 15;15(6):1360–1370. [PMC free article] [PubMed] [Google Scholar]
  24. McKnight K. L., Lemon S. M. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA. 1998 Dec;4(12):1569–1584. doi: 10.1017/s1355838298981006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myers T. M., Kolupaeva V. G., Mendez E., Baginski S. G., Frolov I., Hellen C. U., Rice C. M. Efficient translation initiation is required for replication of bovine viral diarrhea virus subgenomic replicons. J Virol. 2001 May;75(9):4226–4238. doi: 10.1128/JVI.75.9.4226-4238.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 1995 Dec 1;14(23):6010–6020. doi: 10.1002/j.1460-2075.1995.tb00289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rieder E., Paul A. V., Kim D. W., van Boom J. H., Wimmer E. Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to VPg uridylylation. J Virol. 2000 Nov;74(22):10371–10380. doi: 10.1128/jvi.74.22.10371-10380.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rivas E., Eddy S. R. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics. 2000 Jul;16(7):583–605. doi: 10.1093/bioinformatics/16.7.583. [DOI] [PubMed] [Google Scholar]
  29. SenGupta D. J., Zhang B., Kraemer B., Pochart P., Fields S., Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8496–8501. doi: 10.1073/pnas.93.16.8496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Simmonds P., Smith D. B. Structural constraints on RNA virus evolution. J Virol. 1999 Jul;73(7):5787–5794. doi: 10.1128/jvi.73.7.5787-5794.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simons J. N., Pilot-Matias T. J., Leary T. P., Dawson G. J., Desai S. M., Schlauder G. G., Muerhoff A. S., Erker J. C., Buijk S. L., Chalmers M. L. Identification of two flavivirus-like genomes in the GB hepatitis agent. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3401–3405. doi: 10.1073/pnas.92.8.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith D. B., Pathirana S., Davidson F., Lawlor E., Power J., Yap P. L., Simmonds P. The origin of hepatitis C virus genotypes. J Gen Virol. 1997 Feb;78(Pt 2):321–328. doi: 10.1099/0022-1317-78-2-321. [DOI] [PubMed] [Google Scholar]
  33. Smith D. B., Simmonds P. Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. J Mol Evol. 1997 Sep;45(3):238–246. doi: 10.1007/pl00006226. [DOI] [PubMed] [Google Scholar]
  34. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J Virol. 1992 Mar;66(3):1476–1483. doi: 10.1128/jvi.66.3.1476-1483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walewski J. L., Keller T. R., Stump D. D., Branch A. D. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA. 2001 May;7(5):710–721. doi: 10.1017/s1355838201010111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wood J., Frederickson R. M., Fields S., Patel A. H. Hepatitis C virus 3'X region interacts with human ribosomal proteins. J Virol. 2001 Feb;75(3):1348–1358. doi: 10.1128/JVI.75.3.1348-1358.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Workman C., Krogh A. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 1999 Dec 15;27(24):4816–4822. doi: 10.1093/nar/27.24.4816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xu Z., Choi J., Yen T. S., Lu W., Strohecker A., Govindarajan S., Chien D., Selby M. J., Ou J. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 2001 Jul 16;20(14):3840–3848. doi: 10.1093/emboj/20.14.3840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yanagi M., St Claire M., Emerson S. U., Purcell R. H., Bukh J. In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2291–2295. doi: 10.1073/pnas.96.5.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES