Skip to main content
RNA logoLink to RNA
. 2002 Jul;8(7):855–860. doi: 10.1017/s1355838202020071

RNA interference in human cells is restricted to the cytoplasm.

Yan Zeng 1, Bryan R Cullen 1
PMCID: PMC1370302  PMID: 12166640

Abstract

RNA interference (RNAi) is an evolutionarily conserved eukaryotic adaptive response that leads to the specific degradation of target mRNA species in response to cellular exposure to homologous double-stranded RNA molecules. Here, we have analyzed the subcellular location at which RNA degradation occurs in human cells exposed to double-stranded short interfering RNAs. To unequivocally determine whether a given mRNA is subject to degradation in the cytoplasm, the nucleus, or both, we have used the retroviral Rev/RRE system to control whether target mRNAs remain sequestered in the nucleus or are exported to the cytoplasm. In the absence of export, we found that the nuclear level of the RRE-containing target mRNA was not affected by activation of RNAi. In contrast, when nuclear export was induced by expression of Rev, cytoplasmic target mRNAs were effectively and specifically degraded by RNAi. Curiously, when the target mRNA molecule was undergoing active export from the nucleus, induction of RNAi also resulted in a reproducible approximately twofold drop in the level of target mRNA present In the nuclear RNA fraction. As this same mRNA was entirely resistant to RNAi when sequestered in the nucleus, this result suggests that RNAi is able to induce degradation of target mRNAs not only in the cytoplasm but also during the process of nuclear mRNA export. Truly nucleoplasmic mRNAs or pre-mRNAs are, in contrast, resistant to RNAi.

Full Text

The Full Text of this article is available as a PDF (115.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein E., Caudy A. A., Hammond S. M., Hannon G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001 Jan 18;409(6818):363–366. doi: 10.1038/35053110. [DOI] [PubMed] [Google Scholar]
  2. Bogerd H. P., Fridell R. A., Madore S., Cullen B. R. Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell. 1995 Aug 11;82(3):485–494. doi: 10.1016/0092-8674(95)90437-9. [DOI] [PubMed] [Google Scholar]
  3. Caplen N. J., Fleenor J., Fire A., Morgan R. A. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene. 2000 Jul 11;252(1-2):95–105. doi: 10.1016/s0378-1119(00)00224-9. [DOI] [PubMed] [Google Scholar]
  4. Caplen N. J., Parrish S., Imani F., Fire A., Morgan R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 2001 Jul 31;98(17):9742–9747. doi: 10.1073/pnas.171251798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cogoni C., Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature. 1999 May 13;399(6732):166–169. doi: 10.1038/20215. [DOI] [PubMed] [Google Scholar]
  6. Cullen B. R. HIV-1 auxiliary proteins: making connections in a dying cell. Cell. 1998 May 29;93(5):685–692. doi: 10.1016/s0092-8674(00)81431-2. [DOI] [PubMed] [Google Scholar]
  7. Daneholt B. A look at messenger RNP moving through the nuclear pore. Cell. 1997 Mar 7;88(5):585–588. doi: 10.1016/s0092-8674(00)81900-5. [DOI] [PubMed] [Google Scholar]
  8. Domeier M. E., Morse D. P., Knight S. W., Portereiko M., Bass B. L., Mango S. E. A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science. 2000 Sep 15;289(5486):1928–1931. doi: 10.1126/science.289.5486.1928. [DOI] [PubMed] [Google Scholar]
  9. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  10. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  11. Grishok A., Pasquinelli A. E., Conte D., Li N., Parrish S., Ha I., Baillie D. L., Fire A., Ruvkun G., Mello C. C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001 Jul 13;106(1):23–34. doi: 10.1016/s0092-8674(01)00431-7. [DOI] [PubMed] [Google Scholar]
  12. Hamilton A. J., Baulcombe D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999 Oct 29;286(5441):950–952. doi: 10.1126/science.286.5441.950. [DOI] [PubMed] [Google Scholar]
  13. Hammond S. M., Bernstein E., Beach D., Hannon G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000 Mar 16;404(6775):293–296. doi: 10.1038/35005107. [DOI] [PubMed] [Google Scholar]
  14. Hentze M. W., Kulozik A. E. A perfect message: RNA surveillance and nonsense-mediated decay. Cell. 1999 Feb 5;96(3):307–310. doi: 10.1016/s0092-8674(00)80542-5. [DOI] [PubMed] [Google Scholar]
  15. Hutvágner G., McLachlan J., Pasquinelli A. E., Bálint E., Tuschl T., Zamore P. D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001 Jul 12;293(5531):834–838. doi: 10.1126/science.1062961. [DOI] [PubMed] [Google Scholar]
  16. Iborra F. J., Jackson D. A., Cook P. R. Coupled transcription and translation within nuclei of mammalian cells. Science. 2001 Jun 21;293(5532):1139–1142. doi: 10.1126/science.1061216. [DOI] [PubMed] [Google Scholar]
  17. Ishigaki Y., Li X., Serin G., Maquat L. E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell. 2001 Sep 7;106(5):607–617. doi: 10.1016/s0092-8674(01)00475-5. [DOI] [PubMed] [Google Scholar]
  18. Kang Y., Cullen B. R. The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev. 1999 May 1;13(9):1126–1139. doi: 10.1101/gad.13.9.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ketting R. F., Haverkamp T. H., van Luenen H. G., Plasterk R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 1999 Oct 15;99(2):133–141. doi: 10.1016/s0092-8674(00)81645-1. [DOI] [PubMed] [Google Scholar]
  20. Knight S. W., Bass B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001 Aug 2;293(5538):2269–2271. doi: 10.1126/science.1062039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001 Oct 26;294(5543):853–858. doi: 10.1126/science.1064921. [DOI] [PubMed] [Google Scholar]
  22. Lau N. C., Lim L. P., Weinstein E. G., Bartel D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001 Oct 26;294(5543):858–862. doi: 10.1126/science.1065062. [DOI] [PubMed] [Google Scholar]
  23. Lee R. C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001 Oct 26;294(5543):862–864. doi: 10.1126/science.1065329. [DOI] [PubMed] [Google Scholar]
  24. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y. [DOI] [PubMed] [Google Scholar]
  25. Lindbo J. A., Silva-Rosales L., Proebsting W. M., Dougherty W. G. Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell. 1993 Dec;5(12):1749–1759. doi: 10.1105/tpc.5.12.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malim M. H., Hauber J., Le S. Y., Maizel J. V., Cullen B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989 Mar 16;338(6212):254–257. doi: 10.1038/338254a0. [DOI] [PubMed] [Google Scholar]
  27. Maquat L. E., Carmichael G. G. Quality control of mRNA function. Cell. 2001 Jan 26;104(2):173–176. doi: 10.1016/s0092-8674(01)00202-1. [DOI] [PubMed] [Google Scholar]
  28. Montgomery M. K., Xu S., Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15502–15507. doi: 10.1073/pnas.95.26.15502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ngô H., Tschudi C., Gull K., Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14687–14692. doi: 10.1073/pnas.95.25.14687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reinhart B. J., Slack F. J., Basson M., Pasquinelli A. E., Bettinger J. C., Rougvie A. E., Horvitz H. R., Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000 Feb 24;403(6772):901–906. doi: 10.1038/35002607. [DOI] [PubMed] [Google Scholar]
  31. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science. 2001 Oct 26;294(5543):797–799. doi: 10.1126/science.1066315. [DOI] [PubMed] [Google Scholar]
  32. Sharp P. A. RNA interference--2001. Genes Dev. 2001 Mar 1;15(5):485–490. doi: 10.1101/gad.880001. [DOI] [PubMed] [Google Scholar]
  33. Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C. C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999 Oct 15;99(2):123–132. doi: 10.1016/s0092-8674(00)81644-x. [DOI] [PubMed] [Google Scholar]
  34. Wiegand Heather L., Coburn Glen A., Zeng Yan, Kang Yibin, Bogerd Hal P., Cullen Bryan R. Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol. 2002 Jan;22(1):245–256. doi: 10.1128/MCB.22.1.245-256.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000 Mar 31;101(1):25–33. doi: 10.1016/S0092-8674(00)80620-0. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES