Skip to main content
RNA logoLink to RNA
. 2002 Jul;8(7):861–872. doi: 10.1017/s1355838202020216

Dissection of a metal-ion-mediated conformational change in Tetrahymena ribozyme catalysis.

Shu-ou Shan 1, Daniel Herschlag 1
PMCID: PMC1370303  PMID: 12166641

Abstract

Conformational changes are often required for the biological function of RNA molecules. In the Tetrahymena group I ribozyme reaction, a conformational change has been suggested to occur upon binding of the oligonucleotide substrate (S) or the guanosine nucleophile (G), leading to stronger binding of the second substrate. Recent work showed that the two substrates are bridged by a metal ion that coordinates both the nonbridging reactive phosphoryl oxygen of S and the 2'-OH of G. These results suggest that the energy from the metal ion substrate interactions is used to drive the proposed conformational change. In this work, we provide an experimental test for this model. The results provide strong support for the proposed conformational change and for a central role of the bridging metal ion in this change. The results from this work, combined with previous data, allow construction of a two-state model that quantitatively accounts for all of the observations in this and previous-work. This model provides a conceptual and quantitative framework that will facilitate understanding and further probing of the energetic and structural features of this conformational change and its role in catalysis.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aurup H., Tuschl T., Benseler F., Ludwig J., Eckstein F. Oligonucleotide duplexes containing 2'-amino-2'-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Res. 1994 Jan 11;22(1):20–24. doi: 10.1093/nar/22.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass B. L., Cech T. R. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry. 1986 Aug 12;25(16):4473–4477. doi: 10.1021/bi00364a001. [DOI] [PubMed] [Google Scholar]
  3. Bevilacqua P. C., Kierzek R., Johnson K. A., Turner D. H. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science. 1992 Nov 20;258(5086):1355–1358. doi: 10.1126/science.1455230. [DOI] [PubMed] [Google Scholar]
  4. Bevilacqua P. C., Li Y., Turner D. H. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme. Biochemistry. 1994 Sep 20;33(37):11340–11348. doi: 10.1021/bi00203a032. [DOI] [PubMed] [Google Scholar]
  5. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  6. Costa M., Déme E., Jacquier A., Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol. 1997 Apr 4;267(3):520–536. doi: 10.1006/jmbi.1996.0882. [DOI] [PubMed] [Google Scholar]
  7. Doherty E. A., Doudna J. A. Ribozyme structures and mechanisms. Annu Rev Biophys Biomol Struct. 2001;30:457–475. doi: 10.1146/annurev.biophys.30.1.457. [DOI] [PubMed] [Google Scholar]
  8. Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
  9. Frankel A. D., Smith C. A. Induced folding in RNA-protein recognition: more than a simple molecular handshake. Cell. 1998 Jan 23;92(2):149–151. doi: 10.1016/s0092-8674(00)80908-3. [DOI] [PubMed] [Google Scholar]
  10. Golden B. L., Cech T. R. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Biochemistry. 1996 Mar 26;35(12):3754–3763. doi: 10.1021/bi952599z. [DOI] [PubMed] [Google Scholar]
  11. Golden B. L., Gooding A. R., Podell E. R., Cech T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 9;282(5387):259–264. doi: 10.1126/science.282.5387.259. [DOI] [PubMed] [Google Scholar]
  12. Herschlag D., Cech T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry. 1990 Nov 6;29(44):10159–10171. doi: 10.1021/bi00496a003. [DOI] [PubMed] [Google Scholar]
  13. Herschlag D., Eckstein F., Cech T. R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry. 1993 Aug 17;32(32):8312–8321. doi: 10.1021/bi00083a035. [DOI] [PubMed] [Google Scholar]
  14. Herschlag D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry. 1992 Feb 11;31(5):1386–1399. doi: 10.1021/bi00120a015. [DOI] [PubMed] [Google Scholar]
  15. Herschlag D., Khosla M. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step. Biochemistry. 1994 May 3;33(17):5291–5297. doi: 10.1021/bi00183a036. [DOI] [PubMed] [Google Scholar]
  16. Herschlag D. Ribozyme crevices and catalysis. Nature. 1998 Oct 8;395(6702):548–549. doi: 10.1038/26864. [DOI] [PubMed] [Google Scholar]
  17. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  18. Knitt D. S., Narlikar G. J., Herschlag D. Dissection of the role of the conserved G.U pair in group I RNA self-splicing. Biochemistry. 1994 Nov 22;33(46):13864–13879. doi: 10.1021/bi00250a041. [DOI] [PubMed] [Google Scholar]
  19. Li Y., Turner D. H. Effects of Mg2+ and the 2' OH of guanosine on steps required for substrate binding and reactivity with the Tetrahymena ribozyme reveal several local folding transitions. Biochemistry. 1997 Sep 16;36(37):11131–11139. doi: 10.1021/bi971034v. [DOI] [PubMed] [Google Scholar]
  20. Lodmell J. S., Dahlberg A. E. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science. 1997 Aug 29;277(5330):1262–1267. doi: 10.1126/science.277.5330.1262. [DOI] [PubMed] [Google Scholar]
  21. McConnell T. S., Cech T. R. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction. Biochemistry. 1995 Mar 28;34(12):4056–4067. doi: 10.1021/bi00012a024. [DOI] [PubMed] [Google Scholar]
  22. McConnell T. S., Cech T. R., Herschlag D. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8362–8366. doi: 10.1073/pnas.90.18.8362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Narlikar G. J., Herschlag D. Isolation of a local tertiary folding transition in the context of a globally folded RNA. Nat Struct Biol. 1996 Aug;3(8):701–710. doi: 10.1038/nsb0896-701. [DOI] [PubMed] [Google Scholar]
  24. Narlikar G. J., Herschlag D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem. 1997;66:19–59. doi: 10.1146/annurev.biochem.66.1.19. [DOI] [PubMed] [Google Scholar]
  25. Narlikar G. J., Khosla M., Usman N., Herschlag D. Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme. Biochemistry. 1997 Mar 4;36(9):2465–2477. doi: 10.1021/bi9610820. [DOI] [PubMed] [Google Scholar]
  26. Patel D. J., Suri A. K., Jiang F., Jiang L., Fan P., Kumar R. A., Nonin S. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol. 1997 Oct 10;272(5):645–664. doi: 10.1006/jmbi.1997.1281. [DOI] [PubMed] [Google Scholar]
  27. Piccirilli J. A., Vyle J. S., Caruthers M. H., Cech T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 7;361(6407):85–88. doi: 10.1038/361085a0. [DOI] [PubMed] [Google Scholar]
  28. Pyle A. M., Cech T. R. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups. Nature. 1991 Apr 18;350(6319):628–631. doi: 10.1038/350628a0. [DOI] [PubMed] [Google Scholar]
  29. Rajagopal J., Doudna J. A., Szostak J. W. Stereochemical course of catalysis by the Tetrahymena ribozyme. Science. 1989 May 12;244(4905):692–694. doi: 10.1126/science.2470151. [DOI] [PubMed] [Google Scholar]
  30. Shan S., Kravchuk A. V., Piccirilli J. A., Herschlag D. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry. 2001 May 1;40(17):5161–5171. doi: 10.1021/bi002887h. [DOI] [PubMed] [Google Scholar]
  31. Shan S. O., Herschlag D. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry. 1999 Aug 24;38(34):10958–10975. doi: 10.1021/bi990388e. [DOI] [PubMed] [Google Scholar]
  32. Shan S. O., Narlikar G. J., Herschlag D. Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme. Biochemistry. 1999 Aug 24;38(34):10976–10988. doi: 10.1021/bi9903897. [DOI] [PubMed] [Google Scholar]
  33. Shan S. o., Yoshida A., Sun S., Piccirilli J. A., Herschlag D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12299–12304. doi: 10.1073/pnas.96.22.12299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998 Feb 6;92(3):315–326. doi: 10.1016/s0092-8674(00)80925-3. [DOI] [PubMed] [Google Scholar]
  35. Strobel S. A., Cech T. R. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry. 1993 Dec 14;32(49):13593–13604. doi: 10.1021/bi00212a027. [DOI] [PubMed] [Google Scholar]
  36. Strobel S. A., Ortoleva-Donnelly L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem Biol. 1999 Mar;6(3):153–165. doi: 10.1016/S1074-5521(99)89007-3. [DOI] [PubMed] [Google Scholar]
  37. Strobel S. A., Ortoleva-Donnelly L., Ryder S. P., Cate J. H., Moncoeur E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Biol. 1998 Jan;5(1):60–66. doi: 10.1038/nsb0198-60. [DOI] [PubMed] [Google Scholar]
  38. Tanner N. K., Cech T. R. Guanosine binding required for cyclization of the self-splicing intervening sequence ribonucleic acid from Tetrahymena thermophila. Biochemistry. 1987 Jun 16;26(12):3330–3340. doi: 10.1021/bi00386a013. [DOI] [PubMed] [Google Scholar]
  39. Wang S., Karbstein K., Peracchi A., Beigelman L., Herschlag D. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry. 1999 Oct 26;38(43):14363–14378. doi: 10.1021/bi9913202. [DOI] [PubMed] [Google Scholar]
  40. Weinstein L. B., Jones B. C., Cosstick R., Cech T. R. A second catalytic metal ion in group I ribozyme. Nature. 1997 Aug 21;388(6644):805–808. doi: 10.1038/42076. [DOI] [PubMed] [Google Scholar]
  41. Wilson K. S., Noller H. F. Molecular movement inside the translational engine. Cell. 1998 Feb 6;92(3):337–349. doi: 10.1016/s0092-8674(00)80927-7. [DOI] [PubMed] [Google Scholar]
  42. Zaug A. J., Grosshans C. A., Cech T. R. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry. 1988 Dec 13;27(25):8924–8931. doi: 10.1021/bi00425a008. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES