Skip to main content
RNA logoLink to RNA
. 2002 Jul;8(7):890–903. doi: 10.1017/s1355838202022069

Puromycin oligonucleotides reveal steric restrictions for ribosome entry and multiple modes of translation inhibition.

Shelley R Starck 1, Richard W Roberts 1
PMCID: PMC1370306  PMID: 12166644

Abstract

Peptidyl transferase inhibitors have generally been studied using simple systems and remain largely unexamined In in vitro translation extracts. Here, we investigate the potency, product distribution, and mechanism of various puromycin-oligonucleotide conjugates (1 to 44 nt with 3'-puromycin) In a reticulocyte lysate cell-free translation system. Surprisingly, the potency decreases as the chain length of the oligonucleotide is increased in this series, and only very short puromycin conjugates function efficiently (IC50 < 50 microM). This observation stands in contrast with work on isolated large ribosomal subunits, which Indicates that many of the puromycin-oligonucleotide conjugates we studied should have higher affinity for the peptidyl transferase center than puromycin itself. Two tRNA(Al)-derived minihelices containing puromycin provide an exception to the size trend, and are the only constructs longer than 4 nt with any appreciable potency (IC50 = 40-56 microM). However, the puromycin minihelices inhibit translation by sequestering one or more soluble translation factors, and do not appear to participate in detectable peptide bond formation with the nascent chain. In contrast, puromycin and other short derivatives act in a factor-independent fashion at the peptidyl transferase center and readily become conjugated to the nascent protein chain. However, even for the short derivatives, much of the translation inhibition occurs without peptide bond formation between puromycin and the nascent chain, a revision of the classical model for puromycin function. This peptide bond-independent mode is likely a combination of multiple effects including inhibition of initiation and failure to properly recycle translation complexes that have reacted with puromycin.

Full Text

The Full Text of this article is available as a PDF (425.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baksht E., de Groot N., Sprinzl M., Cramer F. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system. Biochemistry. 1976 Aug 10;15(16):3639–3646. doi: 10.1021/bi00661a035. [DOI] [PubMed] [Google Scholar]
  2. Bhuta A., Quiggle K., Ott T., Ringer D., Chládek S. Stereochemical control of ribosomal peptidyltransferase reaction. Role of amino acid side-chain orientation of acceptor substrate. Biochemistry. 1981 Jan 6;20(1):8–15. doi: 10.1021/bi00504a002. [DOI] [PubMed] [Google Scholar]
  3. Bhuta P., Kumar G., Chládek S. The peptidyltransferase center of Escherichia coli ribosomes: binding sites for the cytidine 3'-phosphate residues of the aminoacyl-tRNA 3'-terminus and the interrelationships between the acceptor and donor sites. Biochim Biophys Acta. 1982 Feb 26;696(2):208–211. doi: 10.1016/0167-4781(82)90030-6. [DOI] [PubMed] [Google Scholar]
  4. Chládek S., Ringer D., Zemlicka J. L-Phenylalanine esters of open-chain analog of adenosine as substrates for ribosomal peptidyl transferase. Biochemistry. 1973 Dec 4;12(25):5135–5138. doi: 10.1021/bi00749a017. [DOI] [PubMed] [Google Scholar]
  5. Dougherty D. A. Unnatural amino acids as probes of protein structure and function. Curr Opin Chem Biol. 2000 Dec;4(6):645–652. doi: 10.1016/s1367-5931(00)00148-4. [DOI] [PubMed] [Google Scholar]
  6. Dreher T. W., Uhlenbeck O. C., Browning K. S. Quantitative assessment of EF-1alpha.GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu. J Biol Chem. 1999 Jan 8;274(2):666–672. doi: 10.1074/jbc.274.2.666. [DOI] [PubMed] [Google Scholar]
  7. Ellman J., Mendel D., Anthony-Cahill S., Noren C. J., Schultz P. G. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins. Methods Enzymol. 1991;202:301–336. doi: 10.1016/0076-6879(91)02017-4. [DOI] [PubMed] [Google Scholar]
  8. Green R., Noller H. F. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA. 1996 Oct;2(10):1011–1021. [PMC free article] [PubMed] [Google Scholar]
  9. Green R., Switzer C., Noller H. F. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science. 1998 Apr 10;280(5361):286–289. doi: 10.1126/science.280.5361.286. [DOI] [PubMed] [Google Scholar]
  10. Hengesh E. J., Morris A. J. Inhibition of peptide bond formation by cytidyl derivatives of puromycin. Biochim Biophys Acta. 1973 Apr 11;299(4):654–661. doi: 10.1016/0005-2787(73)90238-4. [DOI] [PubMed] [Google Scholar]
  11. Lessard J. L., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 23. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes. J Biol Chem. 1972 Nov 10;247(21):6909–6912. [PubMed] [Google Scholar]
  12. Liu R., Barrick J. E., Szostak J. W., Roberts R. W. Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol. 2000;318:268–293. doi: 10.1016/s0076-6879(00)18058-9. [DOI] [PubMed] [Google Scholar]
  13. Lorsch J. R., Herschlag D. Kinetic dissection of fundamental processes of eukaryotic translation initiation in vitro. EMBO J. 1999 Dec 1;18(23):6705–6717. doi: 10.1093/emboj/18.23.6705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Michelinaki M., Mamos P., Coutsogeorgopoulos C., Kalpaxis D. L. Aminoacyl and peptidyl analogs of chloramphenicol as slow-binding inhibitors of ribosomal peptidyltransferase: a new approach for evaluating their potency. Mol Pharmacol. 1997 Jan;51(1):139–146. doi: 10.1124/mol.51.1.139. [DOI] [PubMed] [Google Scholar]
  15. Miyamoto-Sato E., Nemoto N., Kobayashi K., Yanagawa H. Specific bonding of puromycin to full-length protein at the C-terminus. Nucleic Acids Res. 2000 Mar 1;28(5):1176–1182. doi: 10.1093/nar/28.5.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monro R. E., Marcker K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J Mol Biol. 1967 Apr 28;25(2):347–350. doi: 10.1016/0022-2836(67)90146-5. [DOI] [PubMed] [Google Scholar]
  17. NATHANS D. PUROMYCIN INHIBITION OF PROTEIN SYNTHESIS: INCORPORATION OF PUROMYCIN INTO PEPTIDE CHAINS. Proc Natl Acad Sci U S A. 1964 Apr;51:585–592. doi: 10.1073/pnas.51.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nazarenko I. A., Uhlenbeck O. C. Defining a smaller RNA substrate for elongation factor Tu. Biochemistry. 1995 Feb 28;34(8):2545–2552. doi: 10.1021/bi00008a019. [DOI] [PubMed] [Google Scholar]
  19. Nemoto N., Miyamoto-Sato E., Husimi Y., Yanagawa H. In vitro virus: bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 1997 Sep 8;414(2):405–408. doi: 10.1016/s0014-5793(97)01026-0. [DOI] [PubMed] [Google Scholar]
  20. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
  21. Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
  22. Odom O. W., Hardesty B. Use of 50 S-binding antibiotics to characterize the ribosomal site to which peptidyl-tRNA is bound. J Biol Chem. 1992 Sep 25;267(27):19117–19122. [PubMed] [Google Scholar]
  23. Pérez-González J. A., Vara J., Jiménez A. Acetylation of puromycin by Streptomyces alboniger the producing organism. Biochem Biophys Res Commun. 1983 Jun 29;113(3):772–777. doi: 10.1016/0006-291x(83)91066-5. [DOI] [PubMed] [Google Scholar]
  24. Roberts R. W., Szostak J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12297–12302. doi: 10.1073/pnas.94.23.12297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Samaha R. R., Green R., Noller H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature. 1995 Sep 28;377(6547):309–314. doi: 10.1038/377309a0. [DOI] [PubMed] [Google Scholar]
  26. Sardesai N. Y., Green R., Schimmel P. Efficient 50S ribosome-catalyzed peptide bond synthesis with an aminoacyl minihelix. Biochemistry. 1999 Sep 14;38(37):12080–12088. doi: 10.1021/bi991126f. [DOI] [PubMed] [Google Scholar]
  27. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  28. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12142–12149. doi: 10.1073/pnas.93.22.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Welch M., Chastang J., Yarus M. An inhibitor of ribosomal peptidyl transferase using transition-state analogy. Biochemistry. 1995 Jan 17;34(2):385–390. doi: 10.1021/bi00002a001. [DOI] [PubMed] [Google Scholar]
  30. Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wolin S. L., Walter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 1988 Nov;7(11):3559–3569. doi: 10.1002/j.1460-2075.1988.tb03233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES