Skip to main content
RNA logoLink to RNA
. 2002 Jul;8(7):948–958. doi: 10.1017/s1355838202026018

One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs.

Toshifumi Inada 1, Eric Winstall 1, Salvador Z Tarun Jr 1, John R Yates 3rd 1, Dave Schieltz 1, Alan B Sachs 1
PMCID: PMC1370311  PMID: 12166649

Abstract

We describe a one-step affinity method for purifying ribosomes from the budding yeast Saccharomyces cerevisiae. Extracts from yeast strains expressing only C-terminally tagged Rpl25 protein or overexpressing this protein in the presence of endogenous Rpl25p were used as the starling materials. The purification was specific for tagged 60S subunits, and resulted in the copurification of 80S subunits and polysomes, as well as ribosome-associated proteins and mRNAs. Two of these associated proteins, Mpt4p and Asc1p, were nearly stoichiometrically bound to the ribosome. In addition, the degree of mRNA association with the purified ribosomes was found to reflect the mRNA's translational status within the cell. The one-step purification of ribosome and its associated components from a crude extract should provide an important tool for future structural and biochemical studies of the ribosome, as well as for expression profiling of translated mRNAs.

Full Text

The Full Text of this article is available as a PDF (205.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  2. Bassler J., Grandi P., Gadal O., Lessmann T., Petfalski E., Tollervey D., Lechner J., Hurt E. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell. 2001 Sep;8(3):517–529. doi: 10.1016/s1097-2765(01)00342-2. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brown V., Jin P., Ceman S., Darnell J. C., O'Donnell W. T., Tenenbaum S. A., Jin X., Feng Y., Wilkinson K. D., Keene J. D. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001 Nov 16;107(4):477–487. doi: 10.1016/s0092-8674(01)00568-2. [DOI] [PubMed] [Google Scholar]
  5. Chantrel Y., Gaisne M., Lions C., Verdière J. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics. 1998 Feb;148(2):559–569. doi: 10.1093/genetics/148.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Darnell J. C., Jensen K. B., Jin P., Brown V., Warren S. T., Darnell R. B. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell. 2001 Nov 16;107(4):489–499. doi: 10.1016/s0092-8674(01)00566-9. [DOI] [PubMed] [Google Scholar]
  7. Frantz J. D., Gilbert W. A yeast gene product, G4p2, with a specific affinity for quadruplex nucleic acids. J Biol Chem. 1995 Apr 21;270(16):9413–9419. doi: 10.1074/jbc.270.16.9413. [DOI] [PubMed] [Google Scholar]
  8. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  9. Harnpicharnchai P., Jakovljevic J., Horsey E., Miles T., Roman J., Rout M., Meagher D., Imai B., Guo Y., Brame C. J. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell. 2001 Sep;8(3):505–515. doi: 10.1016/s1097-2765(01)00344-6. [DOI] [PubMed] [Google Scholar]
  10. Hata H., Mitsui H., Liu H., Bai Y., Denis C. L., Shimizu Y., Sakai A. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics. 1998 Feb;148(2):571–579. doi: 10.1093/genetics/148.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hinnebusch A. G. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6442–6446. doi: 10.1073/pnas.81.20.6442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hurt E., Hannus S., Schmelzl B., Lau D., Tollervey D., Simos G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J Cell Biol. 1999 Feb 8;144(3):389–401. doi: 10.1083/jcb.144.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johannes G., Carter M. S., Eisen M. B., Brown P. O., Sarnow P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13118–13123. doi: 10.1073/pnas.96.23.13118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuhn K. M., DeRisi J. L., Brown P. O., Sarnow P. Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol. 2001 Feb;21(3):916–927. doi: 10.1128/MCB.21.3.916-927.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Link A. J., Eng J., Schieltz D. M., Carmack E., Mize G. J., Morris D. R., Garvik B. M., Yates J. R., 3rd Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999 Jul;17(7):676–682. doi: 10.1038/10890. [DOI] [PubMed] [Google Scholar]
  16. Luthe D. S. A simple technique for the preparation and storage of sucrose gradients. Anal Biochem. 1983 Nov;135(1):230–232. doi: 10.1016/0003-2697(83)90755-8. [DOI] [PubMed] [Google Scholar]
  17. MOL W. [Clubfoot]. Ned Tijdschr Geneeskd. 1963 May 11;107:845–848. [PubMed] [Google Scholar]
  18. Mumberg D., Müller R., Funk M. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994 Dec 25;22(25):5767–5768. doi: 10.1093/nar/22.25.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ng R., Abelson J. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3912–3916. doi: 10.1073/pnas.77.7.3912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oliveira C. C., van den Heuvel J. J., McCarthy J. E. Inhibition of translational initiation in Saccharomyces cerevisiae by secondary structure: the roles of the stability and position of stem-loops in the mRNA leader. Mol Microbiol. 1993 Aug;9(3):521–532. doi: 10.1111/j.1365-2958.1993.tb01713.x. [DOI] [PubMed] [Google Scholar]
  21. Pradet-Balade B., Boulmé F., Beug H., Müllner E. W., Garcia-Sanz J. A. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci. 2001 Apr;26(4):225–229. doi: 10.1016/s0968-0004(00)01776-x. [DOI] [PubMed] [Google Scholar]
  22. Ren B., Robert F., Wyrick J. J., Aparicio O., Jennings E. G., Simon I., Zeitlinger J., Schreiber J., Hannett N., Kanin E. Genome-wide location and function of DNA binding proteins. Science. 2000 Dec 22;290(5500):2306–2309. doi: 10.1126/science.290.5500.2306. [DOI] [PubMed] [Google Scholar]
  23. Takaku H., Mutoh E., Horiuchi H., Ohta A., Takagi M. Ray38p, a homolog of a purine motif triple-helical DNA-binding protein, Stm1p, is a ribosome-associated protein and dissociated from ribosomes prior to the induction of cycloheximide resistance in Candida maltosa. Biochem Biophys Res Commun. 2001 Jun 1;284(1):194–202. doi: 10.1006/bbrc.2001.4951. [DOI] [PubMed] [Google Scholar]
  24. Tenenbaum S. A., Carson C. C., Lager P. J., Keene J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14085–14090. doi: 10.1073/pnas.97.26.14085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E. C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993 Feb 12;72(3):443–457. doi: 10.1016/0092-8674(93)90120-f. [DOI] [PubMed] [Google Scholar]
  26. Velculescu V. E., Zhang L., Zhou W., Vogelstein J., Basrai M. A., Bassett D. E., Jr, Hieter P., Vogelstein B., Kinzler K. W. Characterization of the yeast transcriptome. Cell. 1997 Jan 24;88(2):243–251. doi: 10.1016/s0092-8674(00)81845-0. [DOI] [PubMed] [Google Scholar]
  27. Zong Q., Schummer M., Hood L., Morris D. R. Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10632–10636. doi: 10.1073/pnas.96.19.10632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Hoof A., Lennertz P., Parker R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J. 2000 Mar 15;19(6):1357–1365. doi: 10.1093/emboj/19.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES