Skip to main content
RNA logoLink to RNA
. 2002 Jul;8(7):959–965. doi: 10.1017/s1355838202025049

Analysis of the products of mRNA decapping and 3'-to-5' decay by denaturing gel electrophoresis.

Naomi Bergman 1, Mateusz Opyrchal 1, Elizabeth J Bates 1, Jeffrey Wilusz 1
PMCID: PMC1370312  PMID: 12166650

Abstract

The majority of mRNA turnover is mediated either by mRNA decapping/5'-to-3' decay or exosome-mediated 3'-to-5' exonucleolytic decay. Current assays to assess mRNA decapping in vitro using cap-labeled RNA substrates rely on one-dimensional thin layer chromatography. This approach does not, however, resolve free phosphate from 7meGDP, the product of Dcp1p-mediated mRNA decapping. This can result in misinterpretation of the levels of mRNA decapping due to the generation of free phosphate following the action of the unrelated scavenger decapping activity on the products of exosome-mediated decay. In this report, we describe a simple denaturing acrylamide gel-based assay that faithfully resolves all of the possible products that can be generated from cap-labeled RNA substrates by turnover enzymes present in cell extracts. This approach allows a one-step assay to quantitatively assess the contributions of the exosome and DCP-1-type decapping on turnover of an RNA substrate in vitro. We have applied this assay to recalculate the effect of competition of cap-binding proteins on decapping in yeast. In addition, we have used the assay to confirm observations made on regulated mRNA decapping in mammalian extracts that contain much higher levels of exosome activity than yeast extracts.

Full Text

The Full Text of this article is available as a PDF (145.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allmang C., Petfalski E., Podtelejnikov A., Mann M., Tollervey D., Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148–2158. doi: 10.1101/gad.13.16.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. S., Parker R. P. The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J. 1998 Mar 2;17(5):1497–1506. doi: 10.1093/emboj/17.5.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bochner B. R., Ames B. N. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
  4. Bouveret E., Rigaut G., Shevchenko A., Wilm M., Séraphin B. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 2000 Apr 3;19(7):1661–1671. doi: 10.1093/emboj/19.7.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butler J. Scott. The yin and yang of the exosome. Trends Cell Biol. 2002 Feb;12(2):90–96. doi: 10.1016/s0962-8924(01)02225-5. [DOI] [PubMed] [Google Scholar]
  6. Chen C. Y., Gherzi R., Ong S. E., Chan E. L., Raijmakers R., Pruijn G. J., Stoecklin G., Moroni C., Mann M., Karin M. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001 Nov 16;107(4):451–464. doi: 10.1016/s0092-8674(01)00578-5. [DOI] [PubMed] [Google Scholar]
  7. Coller J. M., Tucker M., Sheth U., Valencia-Sanchez M. A., Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001 Dec;7(12):1717–1727. doi: 10.1017/s135583820101994x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daugeron M. C., Mauxion F., Séraphin B. The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 2001 Jun 15;29(12):2448–2455. doi: 10.1093/nar/29.12.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dehlin E., Wormington M., Körner C. G., Wahle E. Cap-dependent deadenylation of mRNA. EMBO J. 2000 Mar 1;19(5):1079–1086. doi: 10.1093/emboj/19.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunckley T., Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 1999 Oct 1;18(19):5411–5422. doi: 10.1093/emboj/18.19.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dunckley T., Tucker M., Parker R. Two related proteins, Edc1p and Edc2p, stimulate mRNA decapping in Saccharomyces cerevisiae. Genetics. 2001 Jan;157(1):27–37. doi: 10.1093/genetics/157.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ford L. P., Watson J., Keene J. D., Wilusz J. ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes Dev. 1999 Jan 15;13(2):188–201. doi: 10.1101/gad.13.2.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frischmeyer P. A., Dietz H. C. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8(10):1893–1900. doi: 10.1093/hmg/8.10.1893. [DOI] [PubMed] [Google Scholar]
  15. Gao M., Fritz D. T., Ford L. P., Wilusz J. Interaction between a poly(A)-specific ribonuclease and the 5' cap influences mRNA deadenylation rates in vitro. Mol Cell. 2000 Mar;5(3):479–488. doi: 10.1016/s1097-2765(00)80442-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gao M., Wilusz C. J., Peltz S. W., Wilusz J. A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. EMBO J. 2001 Mar 1;20(5):1134–1143. doi: 10.1093/emboj/20.5.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guhaniyogi J., Brewer G. Regulation of mRNA stability in mammalian cells. Gene. 2001 Mar 7;265(1-2):11–23. doi: 10.1016/s0378-1119(01)00350-x. [DOI] [PubMed] [Google Scholar]
  18. Hatfield L., Beelman C. A., Stevens A., Parker R. Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Oct;16(10):5830–5838. doi: 10.1128/mcb.16.10.5830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. He F., Jacobson A. Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol Cell Biol. 2001 Mar;21(5):1515–1530. doi: 10.1128/MCB.21.5.1515-1530.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. He W., Parker R. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation. Genetics. 2001 Aug;158(4):1445–1455. doi: 10.1093/genetics/158.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hentze M. W., Kulozik A. E. A perfect message: RNA surveillance and nonsense-mediated decay. Cell. 1999 Feb 5;96(3):307–310. doi: 10.1016/s0092-8674(00)80542-5. [DOI] [PubMed] [Google Scholar]
  22. Hilleren P., Parker R. Mechanisms of mRNA surveillance in eukaryotes. Annu Rev Genet. 1999;33:229–260. doi: 10.1146/annurev.genet.33.1.229. [DOI] [PubMed] [Google Scholar]
  23. Johnson A. W. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol. 1997 Oct;17(10):6122–6130. doi: 10.1128/mcb.17.10.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keene J. D. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7018–7024. doi: 10.1073/pnas.111145598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lykke-Andersen J., Shu M. D., Steitz J. A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science. 2001 Sep 7;293(5536):1836–1839. doi: 10.1126/science.1062786. [DOI] [PubMed] [Google Scholar]
  26. Malter J. S. Regulation of mRNA stability in the nervous system and beyond. J Neurosci Res. 2001 Nov 1;66(3):311–316. doi: 10.1002/jnr.10021. [DOI] [PubMed] [Google Scholar]
  27. Maquat L. E., Carmichael G. G. Quality control of mRNA function. Cell. 2001 Jan 26;104(2):173–176. doi: 10.1016/s0092-8674(01)00202-1. [DOI] [PubMed] [Google Scholar]
  28. Muhlrad D., Decker C. J., Parker R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev. 1994 Apr 1;8(7):855–866. doi: 10.1101/gad.8.7.855. [DOI] [PubMed] [Google Scholar]
  29. Mukherjee Devi, Gao Min, O'Connor J. Patrick, Raijmakers Reinout, Pruijn Ger, Lutz Carol S., Wilusz Jeffrey. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 2002 Jan 15;21(1-2):165–174. doi: 10.1093/emboj/21.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nuss D. L., Furuichi Y., Koch G., Shatkin A. J. Detection in HeLa cell extracts of a 7-methyl guanosine specific enzyme activity that cleaves m7GpppNm. Cell. 1975 Sep;6(1):21–27. doi: 10.1016/0092-8674(75)90069-0. [DOI] [PubMed] [Google Scholar]
  31. Pal M., Ishigaki Y., Nagy E., Maquat L. E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA. 2001 Jan;7(1):5–15. doi: 10.1017/s1355838201000127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schwartz D. C., Parker R. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol. 2000 Nov;20(21):7933–7942. doi: 10.1128/mcb.20.21.7933-7942.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tharun S., He W., Mayes A. E., Lennertz P., Beggs J. D., Parker R. Yeast Sm-like proteins function in mRNA decapping and decay. Nature. 2000 Mar 30;404(6777):515–518. doi: 10.1038/35006676. [DOI] [PubMed] [Google Scholar]
  34. Tharun S., Parker R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell. 2001 Nov;8(5):1075–1083. doi: 10.1016/s1097-2765(01)00395-1. [DOI] [PubMed] [Google Scholar]
  35. Tucker M., Parker R. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem. 2000;69:571–595. doi: 10.1146/annurev.biochem.69.1.571. [DOI] [PubMed] [Google Scholar]
  36. Tucker M., Valencia-Sanchez M. A., Staples R. R., Chen J., Denis C. L., Parker R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell. 2001 Feb 9;104(3):377–386. doi: 10.1016/s0092-8674(01)00225-2. [DOI] [PubMed] [Google Scholar]
  37. Vilela C., Velasco C., Ptushkina M., McCarthy J. E. The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex. EMBO J. 2000 Aug 15;19(16):4372–4382. doi: 10.1093/emboj/19.16.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang W., Czaplinski K., Rao Y., Peltz S. W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 2001 Feb 15;20(4):880–890. doi: 10.1093/emboj/20.4.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang Z., Kiledjian M. Functional link between the mammalian exosome and mRNA decapping. Cell. 2001 Dec 14;107(6):751–762. doi: 10.1016/s0092-8674(01)00592-x. [DOI] [PubMed] [Google Scholar]
  40. Wilkinson M. F., Shyu A. B. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays. 2001 Sep;23(9):775–787. doi: 10.1002/bies.1113. [DOI] [PubMed] [Google Scholar]
  41. Wilusz C. J., Gao M., Jones C. L., Wilusz J., Peltz S. W. Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA. 2001 Oct;7(10):1416–1424. [PMC free article] [PubMed] [Google Scholar]
  42. Wilusz C. J., Wormington M., Peltz S. W. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001 Apr;2(4):237–246. doi: 10.1038/35067025. [DOI] [PubMed] [Google Scholar]
  43. Zhang S., Williams C. J., Hagan K., Peltz S. W. Mutations in VPS16 and MRT1 stabilize mRNAs by activating an inhibitor of the decapping enzyme. Mol Cell Biol. 1999 Nov;19(11):7568–7576. doi: 10.1128/mcb.19.11.7568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhang S., Williams C. J., Wormington M., Stevens A., Peltz S. W. Monitoring mRNA decapping activity. Methods. 1999 Jan;17(1):46–51. doi: 10.1006/meth.1998.0706. [DOI] [PubMed] [Google Scholar]
  45. van Hoof A., Parker R. The exosome: a proteasome for RNA? Cell. 1999 Nov 12;99(4):347–350. doi: 10.1016/s0092-8674(00)81520-2. [DOI] [PubMed] [Google Scholar]
  46. van Hoof A., Staples R. R., Baker R. E., Parker R. Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Mol Cell Biol. 2000 Nov;20(21):8230–8243. doi: 10.1128/mcb.20.21.8230-8243.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES