Skip to main content
RNA logoLink to RNA
. 2002 Aug;8(8):1034–1044. doi: 10.1017/s1355838202026080

Specific degradation of 3' regions of GUS mRNA in posttranscriptionally silenced tobacco lines may be related to 5'-3' spreading of silencing.

Thomas Hartig Braunstein 1, Benoit Moury 1, Marina Johannessen 1, Merete Albrechtsen 1
PMCID: PMC1370314  PMID: 12212847

Abstract

Target regions for posttranscriptional silencing of transgenes often reside in the 3' region of the coding sequence, although there are exceptions. To resolve if the target region is determined by the gene undergoing silencing rather than by the structure of the transgene loci or the plant genetic background, we have performed detailed analyses of target regions in three spontaneously beta-glucuronidase (GUS) silencing tobacco lines of different origin. From quantitative cosuppression experiments, we show that the main target region in all three tobacco lines is found within the 3' half of the GUS coding region but upstream of the last 200 nt. The quantities of small (21-25 nt) RNAs homologous to 5' or 3' regions of the GUS coding sequence were found to correlate approximately with the target strength of the corresponding regions. These results suggest that transgene locus structure and plant genetic background are not major determinants of silencing target regions. We also show that virus-induced gene silencing (VIGS) of GUS in Nicotiana benthamiana is induced equally effectively with Potato virus X carrying either the 5' or 3' third of the GUS coding region. This indicates that both regions can act as efficient inducers as well as targets of posttranscriptional silencing, although the 3' region is the predominant target region in the spontaneously silencing transgenic plant lines examined. Finally, we investigated spreading of the target region in the N. benthamiana plants undergoing VIGS. Surprisingly, only evidence for spreading of the target region in the 5'-3' direction was obtained. This finding may help explain why the majority of target regions examined to date lie within the 3' region of transgenes.

Full Text

The Full Text of this article is available as a PDF (238.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anandalakshmi R., Pruss G. J., Ge X., Marathe R., Mallory A. C., Smith T. H., Vance V. B. A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13079–13084. doi: 10.1073/pnas.95.22.13079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baulcombe D. C., Chapman S., Santa Cruz S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 1995 Jun;7(6):1045–1053. doi: 10.1046/j.1365-313x.1995.07061045.x. [DOI] [PubMed] [Google Scholar]
  3. Bernstein E., Caudy A. A., Hammond S. M., Hannon G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001 Jan 18;409(6818):363–366. doi: 10.1038/35053110. [DOI] [PubMed] [Google Scholar]
  4. Brigneti G., Voinnet O., Li W. X., Ji L. H., Ding S. W., Baulcombe D. C. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 1998 Nov 16;17(22):6739–6746. doi: 10.1093/emboj/17.22.6739. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  5. Chapman S., Kavanagh T., Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J. 1992 Jul;2(4):549–557. doi: 10.1046/j.1365-313x.1992.t01-24-00999.x. [DOI] [PubMed] [Google Scholar]
  6. Dalmay T., Hamilton A., Rudd S., Angell S., Baulcombe D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 2000 May 26;101(5):543–553. doi: 10.1016/s0092-8674(00)80864-8. [DOI] [PubMed] [Google Scholar]
  7. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  8. Elbashir S. M., Lendeckel W., Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001 Jan 15;15(2):188–200. doi: 10.1101/gad.862301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. English J. J., Mueller E., Baulcombe D. C. Suppression of Virus Accumulation in Transgenic Plants Exhibiting Silencing of Nuclear Genes. Plant Cell. 1996 Feb;8(2):179–188. doi: 10.1105/tpc.8.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamilton A. J., Baulcombe D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999 Oct 29;286(5441):950–952. doi: 10.1126/science.286.5441.950. [DOI] [PubMed] [Google Scholar]
  11. Hammond S. M., Bernstein E., Beach D., Hannon G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000 Mar 16;404(6775):293–296. doi: 10.1038/35005107. [DOI] [PubMed] [Google Scholar]
  12. Han Yuanhuai, Grierson Don. Relationship between small antisense RNAs and aberrant RNAs associated with sense transgene mediated gene silencing in tomato. Plant J. 2002 Feb;29(4):509–519. doi: 10.1046/j.1365-313x.2002.01236.x. [DOI] [PubMed] [Google Scholar]
  13. Hobbs S. L., Kpodar P., DeLong C. M. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol. 1990 Dec;15(6):851–864. doi: 10.1007/BF00039425. [DOI] [PubMed] [Google Scholar]
  14. Hutvágner G., Mlynárová L., Nap J. P. Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco. RNA. 2000 Oct;6(10):1445–1454. doi: 10.1017/s1355838200001096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobs JJ, Sanders M, Bots M, Andriessen M, Van Eldik GJ, Litière K, Van Montagu M, Cornelissen M. Sequences throughout the basic beta-1,3-glucanase mRNA coding region are targets for homology dependent post-transcriptional gene silencing. Plant J. 1999 Oct;20(2):143–152. doi: 10.1046/j.1365-313x.1999.00582.x. [DOI] [PubMed] [Google Scholar]
  16. Jensen S., Gassama M. P., Heidmann T. Taming of transposable elements by homology-dependent gene silencing. Nat Genet. 1999 Feb;21(2):209–212. doi: 10.1038/5997. [DOI] [PubMed] [Google Scholar]
  17. Jones L., Hamilton A. J., Voinnet O., Thomas C. L., Maule A. J., Baulcombe D. C. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell. 1999 Dec;11(12):2291–2301. doi: 10.1105/tpc.11.12.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krizkova L., Hrouda M. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J. 1998 Dec;16(6):673–680. doi: 10.1046/j.1365-313x.1998.00330.x. [DOI] [PubMed] [Google Scholar]
  19. Levin J. Z., de Framond A. J., Tuttle A., Bauer M. W., Heifetz P. B. Methods of double-stranded RNA-mediated gene inactivation in Arabidopsis and their use to define an essential gene in methionine biosynthesis. Plant Mol Biol. 2000 Dec;44(6):759–775. doi: 10.1023/a:1026584607941. [DOI] [PubMed] [Google Scholar]
  20. Li H. W., Lucy A. P., Guo H. S., Li W. X., Ji L. H., Wong S. M., Ding S. W. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J. 1999 May 17;18(10):2683–2691. doi: 10.1093/emboj/18.10.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Y. X., Farrell M. J., Liu R., Mohanty N., Kirby M. L. Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol. 2000 Jan 15;217(2):394–405. doi: 10.1006/dbio.1999.9540. [DOI] [PubMed] [Google Scholar]
  22. Lipardi C., Wei Q., Paterson B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell. 2001 Nov 2;107(3):297–307. doi: 10.1016/s0092-8674(01)00537-2. [DOI] [PubMed] [Google Scholar]
  23. Mette M. F., Matzke A. J., Matzke M. A. Resistance of RNA-mediated TGS to HC-Pro, a viral suppressor of PTGS, suggests alternative pathways for dsRNA processing. Curr Biol. 2001 Jul 24;11(14):1119–1123. doi: 10.1016/s0960-9822(01)00315-3. [DOI] [PubMed] [Google Scholar]
  24. Montgomery M. K., Xu S., Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15502–15507. doi: 10.1073/pnas.95.26.15502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mourrain P., Béclin C., Elmayan T., Feuerbach F., Godon C., Morel J. B., Jouette D., Lacombe A. M., Nikic S., Picault N. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell. 2000 May 26;101(5):533–542. doi: 10.1016/s0092-8674(00)80863-6. [DOI] [PubMed] [Google Scholar]
  26. Muskens M. W., Vissers A. P., Mol J. N., Kooter J. M. Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol. 2000 Jun;43(2-3):243–260. doi: 10.1023/a:1006491613768. [DOI] [PubMed] [Google Scholar]
  27. Schiebel W., Haas B., Marinković S., Klanner A., Sänger H. L. RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. J Biol Chem. 1993 Jun 5;268(16):11858–11867. [PubMed] [Google Scholar]
  28. Sijen T., Fleenor J., Simmer F., Thijssen K. L., Parrish S., Timmons L., Plasterk R. H., Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell. 2001 Nov 16;107(4):465–476. doi: 10.1016/s0092-8674(01)00576-1. [DOI] [PubMed] [Google Scholar]
  29. Sijen T., Vijn I., Rebocho A., van Blokland R., Roelofs D., Mol J. N., Kooter J. M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol. 2001 Mar 20;11(6):436–440. doi: 10.1016/s0960-9822(01)00116-6. [DOI] [PubMed] [Google Scholar]
  30. Sijen T., Wellink J., Hiriart J. B., Van Kammen A. RNA-Mediated Virus Resistance: Role of Repeated Transgenes and Delineation of Targeted Regions. Plant Cell. 1996 Dec;8(12):2277–2294. doi: 10.1105/tpc.8.12.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith N. A., Singh S. P., Wang M. B., Stoutjesdijk P. A., Green A. G., Waterhouse P. M. Total silencing by intron-spliced hairpin RNAs. Nature. 2000 Sep 21;407(6802):319–320. doi: 10.1038/35030305. [DOI] [PubMed] [Google Scholar]
  32. Vaistij Fabián E., Jones Louise, Baulcombe David C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell. 2002 Apr;14(4):857–867. doi: 10.1105/tpc.010480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Voinnet O., Vain P., Angell S., Baulcombe D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998 Oct 16;95(2):177–187. doi: 10.1016/s0092-8674(00)81749-3. [DOI] [PubMed] [Google Scholar]
  34. Waterhouse P. M., Graham M. W., Wang M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13959–13964. doi: 10.1073/pnas.95.23.13959. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES