Skip to main content
RNA logoLink to RNA
. 2002 Aug;8(8):997–1010. doi: 10.1017/s1355838202025013

The conserved central domain of yeast U6 snRNA: importance of U2-U6 helix Ia in spliceosome assembly.

Daniel E Ryan 1, John Abelson 1
PMCID: PMC1370321  PMID: 12212854

Abstract

In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.

Full Text

The Full Text of this article is available as a PDF (285.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achsel T., Brahms H., Kastner B., Bachi A., Wilm M., Lührmann R. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 1999 Oct 15;18(20):5789–5802. doi: 10.1093/emboj/18.20.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ansari A., Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 1995 Aug 15;14(16):4001–4009. doi: 10.1002/j.1460-2075.1995.tb00071.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang J. S., McPheeters D. S. Identification of a U2/U6 helix la mutant that influences 3' splice site selection during nuclear pre-mRNA splicing. RNA. 2000 Aug;6(8):1120–1130. doi: 10.1017/s1355838200000133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng S. C., Abelson J. Spliceosome assembly in yeast. Genes Dev. 1987 Nov;1(9):1014–1027. doi: 10.1101/gad.1.9.1014. [DOI] [PubMed] [Google Scholar]
  5. Collins C. A., Guthrie C. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev. 1999 Aug 1;13(15):1970–1982. doi: 10.1101/gad.13.15.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Datta B., Weiner A. M. Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing. Nature. 1991 Aug 29;352(6338):821–824. doi: 10.1038/352821a0. [DOI] [PubMed] [Google Scholar]
  7. Datta B., Weiner A. M. The phylogenetically invariant ACAGAGA and AGC sequences of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Sep;13(9):5377–5382. doi: 10.1128/mcb.13.9.5377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Du H., Rosbash M. Yeast U1 snRNP-pre-mRNA complex formation without U1snRNA-pre-mRNA base pairing. RNA. 2001 Jan;7(1):133–142. doi: 10.1017/s1355838201001844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fabrizio P., Abelson J. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 1992 Jul 25;20(14):3659–3664. doi: 10.1093/nar/20.14.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fabrizio P., Abelson J. Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science. 1990 Oct 19;250(4979):404–409. doi: 10.1126/science.2145630. [DOI] [PubMed] [Google Scholar]
  11. Fabrizio P., McPheeters D. S., Abelson J. In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev. 1989 Dec;3(12B):2137–2150. doi: 10.1101/gad.3.12b.2137. [DOI] [PubMed] [Google Scholar]
  12. Field D. J., Friesen J. D. Functionally redundant interactions between U2 and U6 spliceosomal snRNAs. Genes Dev. 1996 Feb 15;10(4):489–501. doi: 10.1101/gad.10.4.489. [DOI] [PubMed] [Google Scholar]
  13. Fortner D. M., Troy R. G., Brow D. A. A stem/loop in U6 RNA defines a conformational switch required for pre-mRNA splicing. Genes Dev. 1994 Jan;8(2):221–233. doi: 10.1101/gad.8.2.221. [DOI] [PubMed] [Google Scholar]
  14. Frilander M. J., Steitz J. A. Dynamic exchanges of RNA interactions leading to catalytic core formation in the U12-dependent spliceosome. Mol Cell. 2001 Jan;7(1):217–226. doi: 10.1016/s1097-2765(01)00169-1. [DOI] [PubMed] [Google Scholar]
  15. Ghetti A., Company M., Abelson J. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA. 1995 Apr;1(2):132–145. [PMC free article] [PubMed] [Google Scholar]
  16. Gottschalk A., Bartels C., Neubauer G., Lührmann R., Fabrizio P. A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly. Mol Cell Biol. 2001 May;21(9):3037–3046. doi: 10.1128/MCB.21.9.3037-3046.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamm J., Dathan N. A., Mattaj I. W. Functional analysis of mutant Xenopus U2 snRNAs. Cell. 1989 Oct 6;59(1):159–169. doi: 10.1016/0092-8674(89)90878-7. [DOI] [PubMed] [Google Scholar]
  18. Hastings M. L., Krainer A. R. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol. 2001 Jun;13(3):302–309. doi: 10.1016/s0955-0674(00)00212-x. [DOI] [PubMed] [Google Scholar]
  19. Kandels-Lewis S., Séraphin B. Involvement of U6 snRNA in 5' splice site selection. Science. 1993 Dec 24;262(5142):2035–2039. doi: 10.1126/science.8266100. [DOI] [PubMed] [Google Scholar]
  20. Kim C. H., Ryan D. E., Marciniec T., Abelson J. Site-specific deoxynucleotide substitutions in yeast U6 snRNA block splicing of pre-mRNA in vitro. EMBO J. 1997 Apr 15;16(8):2119–2129. doi: 10.1093/emboj/16.8.2119. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  21. Kim S. H., Lin R. J. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol Cell Biol. 1996 Dec;16(12):6810–6819. doi: 10.1128/mcb.16.12.6810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim S. H., Smith J., Claude A., Lin R. J. The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase. EMBO J. 1992 Jun;11(6):2319–2326. doi: 10.1002/j.1460-2075.1992.tb05291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lesser C. F., Guthrie C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science. 1993 Dec 24;262(5142):1982–1988. doi: 10.1126/science.8266093. [DOI] [PubMed] [Google Scholar]
  24. Lin R. J., Lustig A. J., Abelson J. Splicing of yeast nuclear pre-mRNA in vitro requires a functional 40S spliceosome and several extrinsic factors. Genes Dev. 1987 Mar;1(1):7–18. doi: 10.1101/gad.1.1.7. [DOI] [PubMed] [Google Scholar]
  25. Lin R. J., Newman A. J., Cheng S. C., Abelson J. Yeast mRNA splicing in vitro. J Biol Chem. 1985 Nov 25;260(27):14780–14792. [PubMed] [Google Scholar]
  26. Madhani H. D., Bordonné R., Guthrie C. Multiple roles for U6 snRNA in the splicing pathway. Genes Dev. 1990 Dec;4(12B):2264–2277. doi: 10.1101/gad.4.12b.2264. [DOI] [PubMed] [Google Scholar]
  27. Madhani H. D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell. 1992 Nov 27;71(5):803–817. doi: 10.1016/0092-8674(92)90556-r. [DOI] [PubMed] [Google Scholar]
  28. Madhani H. D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell. 1992 Nov 27;71(5):803–817. doi: 10.1016/0092-8674(92)90556-r. [DOI] [PubMed] [Google Scholar]
  29. Madhani H. D., Guthrie C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 1994 May 1;8(9):1071–1086. doi: 10.1101/gad.8.9.1071. [DOI] [PubMed] [Google Scholar]
  30. Mayes A. E., Verdone L., Legrain P., Beggs J. D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 1999 Aug 2;18(15):4321–4331. doi: 10.1093/emboj/18.15.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McPheeters D. S., Abelson J. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell. 1992 Nov 27;71(5):819–831. doi: 10.1016/0092-8674(92)90557-s. [DOI] [PubMed] [Google Scholar]
  32. McPheeters D. S. Interactions of the yeast U6 RNA with the pre-mRNA branch site. RNA. 1996 Nov;2(11):1110–1123. [PMC free article] [PubMed] [Google Scholar]
  33. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  34. Raghunathan P. L., Guthrie C. A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science. 1998 Feb 6;279(5352):857–860. doi: 10.1126/science.279.5352.857. [DOI] [PubMed] [Google Scholar]
  35. Ryan Daniel E., Stevens Scott W., Abelson John. The 5' and 3' domains of yeast U6 snRNA: Lsm proteins facilitate binding of Prp24 protein to the U6 telestem region. RNA. 2002 Aug;8(8):1011–1033. doi: 10.1017/s1355838202026092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seraphin B., Rosbash M. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell. 1989 Oct 20;59(2):349–358. doi: 10.1016/0092-8674(89)90296-1. [DOI] [PubMed] [Google Scholar]
  37. Shannon K. W., Guthrie C. Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev. 1991 May;5(5):773–785. doi: 10.1101/gad.5.5.773. [DOI] [PubMed] [Google Scholar]
  38. Shukla G. C., Padgett R. A. The intramolecular stem-loop structure of U6 snRNA can functionally replace the U6atac snRNA stem-loop. RNA. 2001 Jan;7(1):94–105. doi: 10.1017/s1355838201000218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Siatecka M., Reyes J. L., Konarska M. M. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev. 1999 Aug 1;13(15):1983–1993. doi: 10.1101/gad.13.15.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sontheimer E. J., Gordon P. M., Piccirilli J. A. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev. 1999 Jul 1;13(13):1729–1741. doi: 10.1101/gad.13.13.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sontheimer E. J., Sun S., Piccirilli J. A. Metal ion catalysis during splicing of premessenger RNA. Nature. 1997 Aug 21;388(6644):801–805. doi: 10.1038/42068. [DOI] [PubMed] [Google Scholar]
  42. Staley J. P., Guthrie C. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. Mol Cell. 1999 Jan;3(1):55–64. doi: 10.1016/s1097-2765(00)80174-4. [DOI] [PubMed] [Google Scholar]
  43. Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stevens S. W., Barta I., Ge H. Y., Moore R. E., Young M. K., Lee T. D., Abelson J. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA. 2001 Nov;7(11):1543–1553. [PMC free article] [PubMed] [Google Scholar]
  45. Stevens Scott W., Ryan Daniel E., Ge Helen Y., Moore Roger E., Young Mary K., Lee Terry D., Abelson John. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell. 2002 Jan;9(1):31–44. doi: 10.1016/s1097-2765(02)00436-7. [DOI] [PubMed] [Google Scholar]
  46. Sun J. S., Manley J. L. A novel U2-U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 1995 Apr 1;9(7):843–854. doi: 10.1101/gad.9.7.843. [DOI] [PubMed] [Google Scholar]
  47. Sun J. S., Manley J. L. The human U6 snRNA intramolecular helix: structural constraints and lack of sequence specificity. RNA. 1997 May;3(5):514–526. [PMC free article] [PubMed] [Google Scholar]
  48. Tarn W. Y., Steitz J. A. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science. 1996 Sep 27;273(5283):1824–1832. doi: 10.1126/science.273.5283.1824. [DOI] [PubMed] [Google Scholar]
  49. Teigelkamp S., McGarvey M., Plumpton M., Beggs J. D. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. EMBO J. 1994 Feb 15;13(4):888–897. doi: 10.1002/j.1460-2075.1994.tb06332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vankan P., McGuigan C., Mattaj I. W. Domains of U4 and U6 snRNAs required for snRNP assembly and splicing complementation in Xenopus oocytes. EMBO J. 1990 Oct;9(10):3397–3404. doi: 10.1002/j.1460-2075.1990.tb07541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vankan P., McGuigan C., Mattaj I. W. Roles of U4 and U6 snRNAs in the assembly of splicing complexes. EMBO J. 1992 Jan;11(1):335–343. doi: 10.1002/j.1460-2075.1992.tb05056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vidal V. P., Verdone L., Mayes A. E., Beggs J. D. Characterization of U6 snRNA-protein interactions. RNA. 1999 Nov;5(11):1470–1481. doi: 10.1017/s1355838299991355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Will C. L., Lührmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. 2001 Jun;13(3):290–301. doi: 10.1016/s0955-0674(00)00211-8. [DOI] [PubMed] [Google Scholar]
  54. Wolff T., Bindereif A. Conformational changes of U6 RNA during the spliceosome cycle: an intramolecular helix is essential both for initiating the U4-U6 interaction and for the first step of slicing. Genes Dev. 1993 Jul;7(7B):1377–1389. doi: 10.1101/gad.7.7b.1377. [DOI] [PubMed] [Google Scholar]
  55. Wolff T., Bindereif A. Mutational analysis of human U6 RNA: stabilizing the intramolecular helix blocks the spliceosomal assembly pathway. Biochim Biophys Acta. 1995 Jul 25;1263(1):39–44. doi: 10.1016/0167-4781(95)00085-u. [DOI] [PubMed] [Google Scholar]
  56. Wolff T., Menssen R., Hammel J., Bindereif A. Splicing function of mammalian U6 small nuclear RNA: conserved positions in central domain and helix I are essential during the first and second step of pre-mRNA splicing. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):903–907. doi: 10.1073/pnas.91.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wu J. A., Manley J. L. Base pairing between U2 and U6 snRNAs is necessary for splicing of a mammalian pre-mRNA. Nature. 1991 Aug 29;352(6338):818–821. doi: 10.1038/352818a0. [DOI] [PubMed] [Google Scholar]
  58. Yan D., Ares M., Jr Invariant U2 RNA sequences bordering the branchpoint recognition region are essential for interaction with yeast SF3a and SF3b subunits. Mol Cell Biol. 1996 Mar;16(3):818–828. doi: 10.1128/mcb.16.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yean S. L., Lin R. J. U4 small nuclear RNA dissociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. Mol Cell Biol. 1991 Nov;11(11):5571–5577. doi: 10.1128/mcb.11.11.5571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yean S. L., Wuenschell G., Termini J., Lin R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature. 2000 Dec 14;408(6814):881–884. doi: 10.1038/35048617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yu Y. T., Maroney P. A., Darzynkiwicz E., Nilsen T. W. U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA. 1995 Mar;1(1):46–54. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES