Skip to main content
RNA logoLink to RNA
. 2002 Sep;8(9):1112–1119. doi: 10.1017/s135583820202006x

Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs.

Uma Nagaswamy 1, George E Fox 1
PMCID: PMC1370325  PMID: 12358430

Abstract

Analysis of atomic resolution structures of the rRNAs within the context of the 50S and the 30S ribosomal subunits have revealed the presence of nine examples of a recurrent structural motif, first observed in the TpsiC loop of tRNAs. The key component of this T-loop motif is a UA trans Watson-Crick/Hoogsteen base pair stacked on a Watson-Crick pair on one side. This motif is stabilized by several noncanonical hydrogen bonds, facilitating RNA-RNA as well as RNA-protein interactions. In particular, the sugar edge of the purine on the 3' side of the pivotal uridine in the UA pair frequently forms a noncanonical base pair with a distant residue. The bulged-out bases, usually seen as part of the motif, also use their Watson-Crick edges to interact with nearby residues via base-specific hydrogen bonds. In certain occurrences, a backbone reversal is stabilized by specific hydrogen bonds as is observed in the U-turn motifs and the adenosine residue of the key UA pair interacts with a third base via its Watson-Crick edge, essentially generating a base triple.

Full Text

The Full Text of this article is available as a PDF (224.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  2. Barends Sharief, Björk Karl, Gultyaev Alexander P., de Smit Maarten H., Pleij Cornelis W. A., Kraal Barend. Functional evidence for D- and T-loop interactions in tmRNA. FEBS Lett. 2002 Mar 6;514(1):78–83. doi: 10.1016/s0014-5793(02)02306-2. [DOI] [PubMed] [Google Scholar]
  3. Conn G. L., Draper D. E., Lattman E. E., Gittis A. G. Crystal structure of a conserved ribosomal protein-RNA complex. Science. 1999 May 14;284(5417):1171–1174. doi: 10.1126/science.284.5417.1171. [DOI] [PubMed] [Google Scholar]
  4. Conn G. L., Draper D. E. RNA structure. Curr Opin Struct Biol. 1998 Jun;8(3):278–285. doi: 10.1016/s0959-440x(98)80059-6. [DOI] [PubMed] [Google Scholar]
  5. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  6. Correll C. C., Munishkin A., Chan Y. L., Ren Z., Wool I. G., Steitz T. A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13436–13441. doi: 10.1073/pnas.95.23.13436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
  8. Fechter P., Rudinger-Thirion J., Florentz C., Giegé R. Novel features in the tRNA-like world of plant viral RNAs. Cell Mol Life Sci. 2001 Oct;58(11):1547–1561. doi: 10.1007/PL00000795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  10. Gutell R. R., Cannone J. J., Konings D., Gautheret D. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J Mol Biol. 2000 Jul 21;300(4):791–803. doi: 10.1006/jmbi.2000.3900. [DOI] [PubMed] [Google Scholar]
  11. Klein D. J., Schmeing T. M., Moore P. B., Steitz T. A. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001 Aug 1;20(15):4214–4221. doi: 10.1093/emboj/20.15.4214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leontis N. B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001 Apr;7(4):499–512. doi: 10.1017/s1355838201002515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagaswamy Uma, Larios-Sanz Maia, Hury James, Collins Shakaala, Zhang Zhengdong, Zhao Qin, Fox George E. NCIR: a database of non-canonical interactions in known RNA structures. Nucleic Acids Res. 2002 Jan 1;30(1):395–397. doi: 10.1093/nar/30.1.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nissen P., Ippolito J. A., Ban N., Moore P. B., Steitz T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A. 2001 Apr 10;98(9):4899–4903. doi: 10.1073/pnas.081082398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
  16. Schimmel P., Ribas de Pouplana L. Transfer RNA: from minihelix to genetic code. Cell. 1995 Jun 30;81(7):983–986. doi: 10.1016/s0092-8674(05)80002-9. [DOI] [PubMed] [Google Scholar]
  17. Shi H., Moore P. B. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA. 2000 Aug;6(8):1091–1105. doi: 10.1017/s1355838200000364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Szewczak A. A., Moore P. B., Chang Y. L., Wool I. G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9581–9585. doi: 10.1073/pnas.90.20.9581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wimberly B. T., Brodersen D. E., Clemons W. M., Jr, Morgan-Warren R. J., Carter A. P., Vonrhein C., Hartsch T., Ramakrishnan V. Structure of the 30S ribosomal subunit. Nature. 2000 Sep 21;407(6802):327–339. doi: 10.1038/35030006. [DOI] [PubMed] [Google Scholar]
  20. Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]
  21. Woese C. R., Winker S., Gutell R. R. Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". Proc Natl Acad Sci U S A. 1990 Nov;87(21):8467–8471. doi: 10.1073/pnas.87.21.8467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES