Skip to main content
RNA logoLink to RNA
. 2002 Sep;8(9):1129–1136. doi: 10.1017/s1355838202021052

Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus.

Elisabetta Bini 1, Vidula Dikshit 1, Kristi Dirksen 1, Melissa Drozda 1, Paul Blum 1
PMCID: PMC1370327  PMID: 12358432

Abstract

Archaea-like bacteria are prokaryotes but, in contrast, use eukaryotic-like systems for key aspects of DNA, RNA, and protein metabolism. mRNA is typically unstable in bacteria and stable in eukaryotes, but little information is available about mRNA half-lives in archaea. Because archaea are generally insensitive to antibiotics, examination of mRNA stability in the hyperthermophile, Sulfolobus solfataricus, required the identification of transcription inhibitors for half-life determinations. An improved lacS promoter-dependent in vitro transcription system was used to assess inhibitor action. Efficient inhibitors were distinguished as blocking both lacSp transcription in vitro and the incorporation of 3H-uracil into bulk RNA in vivo. Actinomycin D was the most stable and potent compound identified. A survey of transcript chemical half-lives normalized to levels of the signal recognition particle 7S RNA ranged from at least 2 h for tfb1, a transcription factor TFIIB paralog, to a minimum of 6.3 min for gln1, one of three glutamine synthetase paralogs. Transcript half-lives for other mRNAs were: 2 h, superoxide dismutase (sod); 37.5 min, glucose dehydrogenase (dhg1); 25 min, alpha-glucosidase (malA); and 13.5 min, transcription factor TFIIB-2 (tfb2) resulting in a minimum average half-life of 54 min. These are the first mRNA half-lives reported for a hyperthermophile or member of the crenarchaea. The unexpected stability of several transcripts has important implications for gene expression and mRNA degradation in this organism.

Full Text

The Full Text of this article is available as a PDF (191.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN M. B. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32(3):270–277. doi: 10.1007/BF00409348. [DOI] [PubMed] [Google Scholar]
  2. Arnold T. E., Yu J., Belasco J. G. mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA. 1998 Mar;4(3):319–330. [PMC free article] [PubMed] [Google Scholar]
  3. Bartlett M. S., Thomm M., Geiduschek E. P. The orientation of DNA in an archaeal transcription initiation complex. Nat Struct Biol. 2000 Sep;7(9):782–785. doi: 10.1038/79020. [DOI] [PubMed] [Google Scholar]
  4. Bell S. D., Kosa P. L., Sigler P. B., Jackson S. P. Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13662–13667. doi: 10.1073/pnas.96.24.13662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blum E., Py B., Carpousis A. J., Higgins C. F. Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol Microbiol. 1997 Oct;26(2):387–398. doi: 10.1046/j.1365-2958.1997.5901947.x. [DOI] [PubMed] [Google Scholar]
  6. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  7. Brown J. W., Reeve J. N. Polyadenylated RNA isolated from the archaebacterium Halobacterium halobium. J Bacteriol. 1986 May;166(2):686–688. doi: 10.1128/jb.166.2.686-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown J. W., Reeve J. N. Polyadenylated, noncapped RNA from the archaebacterium Methanococcus vannielii. J Bacteriol. 1985 Jun;162(3):909–917. doi: 10.1128/jb.162.3.909-917.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cheung J., Danna K. J., O'Connor E. M., Price L. B., Shand R. F. Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon Haloferax mediterranei R4. J Bacteriol. 1997 Jan;179(2):548–551. doi: 10.1128/jb.179.2.548-551.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coburn G. A., Mackie G. A. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol. 1999;62:55–108. doi: 10.1016/s0079-6603(08)60505-x. [DOI] [PubMed] [Google Scholar]
  11. Danson M. J., Hough D. W. The enzymology of archaebacterial pathways of central metabolism. Biochem Soc Symp. 1992;58:7–21. [PubMed] [Google Scholar]
  12. Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet. 1999;33:193–227. doi: 10.1146/annurev.genet.33.1.193. [DOI] [PubMed] [Google Scholar]
  13. Hambraeus G., Persson M., Rutberg B. The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. Microbiology. 2000 Dec;146(Pt 12):3051–3059. doi: 10.1099/00221287-146-12-3051. [DOI] [PubMed] [Google Scholar]
  14. Haseltine C., Montalvo-Rodriguez R., Bini E., Carl A., Blum P. Coordinate transcriptional control in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1999 Jul;181(13):3920–3927. doi: 10.1128/jb.181.13.3920-3927.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haseltine C., Montalvo-Rodriguez R., Carl A., Bini E., Blum P. Extragenic pleiotropic mutations that repress glycosyl hydrolase expression in the hyperthermophilic archaeon Sulfolobus solfataricus. Genetics. 1999 Aug;152(4):1353–1361. doi: 10.1093/genetics/152.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hennigan A. N., Reeve J. N. mRNAs in the methanogenic archaeon Methanococcus vannielii: numbers, half-lives and processing. Mol Microbiol. 1994 Feb;11(4):655–670. doi: 10.1111/j.1365-2958.1994.tb00344.x. [DOI] [PubMed] [Google Scholar]
  17. Hethke C., Bergerat A., Hausner W., Forterre P., Thomm M. Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription. Genetics. 1999 Aug;152(4):1325–1333. doi: 10.1093/genetics/152.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hjort K., Bernander R. Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol Microbiol. 2001 Apr;40(1):225–234. doi: 10.1046/j.1365-2958.2001.02377.x. [DOI] [PubMed] [Google Scholar]
  19. Hüdepohl U., Reiter W. D., Zillig W. In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B12 indicates a factor requirement for specific initiation. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5851–5855. doi: 10.1073/pnas.87.15.5851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koonin E. V., Wolf Y. I., Aravind L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res. 2001 Feb;11(2):240–252. doi: 10.1101/gr.162001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kriebardis T., Meng D., Aktipis S. Inhibition of the RNA polymerase-catalyzed synthesis of RNA by daunomycin. Effect of the inhibitor on the late steps of RNA chain initiation. J Biol Chem. 1987 Sep 15;262(26):12632–12640. [PubMed] [Google Scholar]
  22. Li H., Trotta C. R., Abelson J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science. 1998 Apr 10;280(5361):279–284. doi: 10.1126/science.280.5361.279. [DOI] [PubMed] [Google Scholar]
  23. Lindahl T. Irreversible heat inactivation of transfer ribonucleic acids. J Biol Chem. 1967 Apr 25;242(8):1970–1973. [PubMed] [Google Scholar]
  24. Logan K., Zhang J., Davis E. A., Ackerman S. Drug inhibitors of RNA polymerase II transcription. DNA. 1989 Oct;8(8):595–604. doi: 10.1089/dna.1989.8.595. [DOI] [PubMed] [Google Scholar]
  25. Lykke-Andersen J., Garrett R. A. RNA-protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history. EMBO J. 1997 Oct 15;16(20):6290–6300. doi: 10.1093/emboj/16.20.6290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mazumder A., Perrin D. M., McMillin D., Sigman D. S. Interactions of transcription inhibitors with the Escherichia coli RNA polymerase-lacUV5 promoter open complex. Biochemistry. 1994 Mar 1;33(8):2262–2268. doi: 10.1021/bi00174a037. [DOI] [PubMed] [Google Scholar]
  27. Mitchell P., Tollervey D. mRNA stability in eukaryotes. Curr Opin Genet Dev. 2000 Apr;10(2):193–198. doi: 10.1016/s0959-437x(00)00063-0. [DOI] [PubMed] [Google Scholar]
  28. Muroya A., Tsuchiya D., Ishikawa M., Haruki M., Morikawa M., Kanaya S., Morikawa K. Catalytic center of an archaeal type 2 ribonuclease H as revealed by X-ray crystallographic and mutational analyses. Protein Sci. 2001 Apr;10(4):707–714. doi: 10.1110/ps.48001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nilsson G., Belasco J. G., Cohen S. N., von Gabain A. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature. 1984 Nov 1;312(5989):75–77. doi: 10.1038/312075a0. [DOI] [PubMed] [Google Scholar]
  30. O'Hara E. B., Chekanova J. A., Ingle C. A., Kushner Z. R., Peters E., Kushner S. R. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1807–1811. doi: 10.1073/pnas.92.6.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Orfeo T., Chen L., Huang W., Ward G., Bateman E. Distamycin A selectively inhibits Acanthamoeba RNA synthesis and differentiation. Biochim Biophys Acta. 1999 Sep 3;1446(3):273–285. doi: 10.1016/s0167-4781(99)00076-7. [DOI] [PubMed] [Google Scholar]
  32. Pannucci J. A., Haas E. S., Hall T. A., Harris J. K., Brown J. W. RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7803–7808. doi: 10.1073/pnas.96.14.7803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pato M. L., Bennett P. M., von Meyenburg K. Messenger ribonucleic acid synthesis and degradation in Escherichia coli during inhibition of translation. J Bacteriol. 1973 Nov;116(2):710–718. doi: 10.1128/jb.116.2.710-718.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Qureshi S. A., Jackson S. P. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. Mol Cell. 1998 Feb;1(3):389–400. doi: 10.1016/s1097-2765(00)80039-8. [DOI] [PubMed] [Google Scholar]
  35. Rockabrand D., Livers K., Austin T., Kaiser R., Jensen D., Burgess R., Blum P. Roles of DnaK and RpoS in starvation-induced thermotolerance of Escherichia coli. J Bacteriol. 1998 Feb;180(4):846–854. doi: 10.1128/jb.180.4.846-854.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rolfsmeier M., Blum P. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J Bacteriol. 1995 Jan;177(2):482–485. doi: 10.1128/jb.177.2.482-485.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rolfsmeier M., Haseltine C., Bini E., Clark A., Blum P. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1998 Mar;180(5):1287–1295. doi: 10.1128/jb.180.5.1287-1295.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Russell A. G., Ebhardt H., Dennis P. P. Substrate requirements for a novel archaeal endonuclease that cleaves within the 5' external transcribed spacer of Sulfolobus acidocaldarius precursor rRNA. Genetics. 1999 Aug;152(4):1373–1385. doi: 10.1093/genetics/152.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sarkar N. Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem. 1997;66:173–197. doi: 10.1146/annurev.biochem.66.1.173. [DOI] [PubMed] [Google Scholar]
  41. Seiser C., Posch M., Thompson N., Kühn L. C. Effect of transcription inhibitors on the iron-dependent degradation of transferrin receptor mRNA. J Biol Chem. 1995 Dec 8;270(49):29400–29406. doi: 10.1074/jbc.270.49.29400. [DOI] [PubMed] [Google Scholar]
  42. She Q., Singh R. K., Confalonieri F., Zivanovic Y., Allard G., Awayez M. J., Chan-Weiher C. C., Clausen I. G., Curtis B. A., De Moors A. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A. 2001 Jun 26;98(14):7835–7840. doi: 10.1073/pnas.141222098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shyu A. B., Belasco J. G., Greenberg M. E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. doi: 10.1101/gad.5.2.221. [DOI] [PubMed] [Google Scholar]
  44. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  45. Stathopoulos C., Kim W., Li T., Anderson I., Deutsch B., Palioura S., Whitman W., Söll D. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A. 2001 Nov 20;98(25):14292–14297. doi: 10.1073/pnas.201540498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Steege D. A. Emerging features of mRNA decay in bacteria. RNA. 2000 Aug;6(8):1079–1090. doi: 10.1017/s1355838200001023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tolstrup N., Sensen C. W., Garrett R. A., Clausen I. G. Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus. Extremophiles. 2000 Jun;4(3):175–179. doi: 10.1007/s007920070032. [DOI] [PubMed] [Google Scholar]
  48. Ursby T., Adinolfi B. S., Al-Karadaghi S., De Vendittis E., Bocchini V. Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. J Mol Biol. 1999 Feb 12;286(1):189–205. doi: 10.1006/jmbi.1998.2471. [DOI] [PubMed] [Google Scholar]
  49. Vanzo N. F., Li Y. S., Py B., Blum E., Higgins C. F., Raynal L. C., Krisch H. M., Carpousis A. J. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev. 1998 Sep 1;12(17):2770–2781. doi: 10.1101/gad.12.17.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Völkl P., Markiewicz P., Baikalov C., Fitz-Gibbon S., Stetter K. O., Miller J. H. Genomic and cDNA sequence tags of the hyperthermophilic archaeon Pyrobaculum aerophilum. Nucleic Acids Res. 1996 Nov 15;24(22):4373–4378. doi: 10.1093/nar/24.22.4373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wang Yulei, Liu Chih Long, Storey John D., Tibshirani Robert J., Herschlag Daniel, Brown Patrick O. Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5860–5865. doi: 10.1073/pnas.092538799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Warner J. R., Gorenstein C. Yeast has a true stringent response. Nature. 1978 Sep 28;275(5678):338–339. doi: 10.1038/275338a0. [DOI] [PubMed] [Google Scholar]
  53. Webb M. L., Maguire K. A., Jacob S. T. Novobiocin inhibits initiation of RNA polymerase II-directed transcription of the mouse metallothionein-I gene independent of its effect on DNA topoisomerase II. Nucleic Acids Res. 1987 Oct 26;15(20):8547–8560. doi: 10.1093/nar/15.20.8547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Xu F., Lin-Chao S., Cohen S. N. The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6756–6760. doi: 10.1073/pnas.90.14.6756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Xu N., Chen C. Y., Shyu A. B. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol. 1997 Aug;17(8):4611–4621. doi: 10.1128/mcb.17.8.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zillig W., Stetter K. O., Janeković D. DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem. 1979 Jun 1;96(3):597–604. doi: 10.1111/j.1432-1033.1979.tb13074.x. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES