Skip to main content
RNA logoLink to RNA
. 2002 Sep;8(9):1137–1147. doi: 10.1017/s1355838202029990

Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation.

Anastassia V Komarova 1, Ludmila S Tchufistova 1, Elena V Supina 1, Irina V Boni 1
PMCID: PMC1370328  PMID: 12358433

Abstract

There are two major components of Escherichia coli ribosomes directly involved in selection and binding of mRNA during initiation of protein synthesis-the highly conserved 3' end of 16S rRNA (aSD) complementary to the Shine-Dalgarno (SD) domain of mRNA, and the ribosomal protein S1. A contribution of the SD-aSD and S1-mRNA interactions to translation yield in vivo has been evaluated in a genetic system developed to compare efficiencies of various ribosome-binding sites (RBS) in driving beta-galactosidase synthesis from the single-copy (chromosomal) lacZ gene. The in vivo experiments have been supplemented by in vitro toeprinting and gel-mobility shift assays. A shortening of a potential SD-aSD duplex from 10 to 8 and to 6 bp increased the beta-galactosidase yield (four- and sixfold, respectively) suggesting that an extended SD-aSD duplex adversely affects translation, most likely due to its redundant stability causing ribosome stalling at the initiation step. Translation yields were significantly increased upon insertion of the A/U-rich S1 binding targets upstream of the SD region, but the longest SD remained relatively less efficient. In contrast to complete 30S ribosomes, the S1-depleted 30S particles have been able to form an extended SD-aSD duplex, but not the true ternary initiation complex. Taken together, the in vivo and in vitro data allow us to conclude that S1 plays two roles in translation initiation: It forms an essential part of the mRNA-binding track even when mRNA bears a long SD sequence, and through the binding to the 5' untranslated region, it can ensure a substantial enhancing effect on translation.

Full Text

The Full Text of this article is available as a PDF (575.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balakin A. G., Bogdanova S. L., Skripkin E. A. mRNA containing an extended Shine-Dalgarno sequence is translated independently of ribosomal protein S1. Biochem Int. 1992 Jun;27(1):117–129. [PubMed] [Google Scholar]
  2. Boni I. V., Artamonova V. S., Dreyfus M. The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. J Bacteriol. 2000 Oct;182(20):5872–5879. doi: 10.1128/jb.182.20.5872-5879.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boni I. V., Artamonova V. S., Tzareva N. V., Dreyfus M. Non-canonical mechanism for translational control in bacteria: synthesis of ribosomal protein S1. EMBO J. 2001 Aug 1;20(15):4222–4232. doi: 10.1093/emboj/20.15.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boni I. V., Isaeva D. M., Musychenko M. L., Tzareva N. V. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 1991 Jan 11;19(1):155–162. doi: 10.1093/nar/19.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calogero R. A., Pon C. L., Canonaco M. A., Gualerzi C. O. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6427–6431. doi: 10.1073/pnas.85.17.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Boer H. A., Comstock L. J., Hui A., Wong E., Vasser M. A hybrid promoter and portable Shine-Dalgarno regions of Escherichia coli. Biochem Soc Symp. 1983;48:233–244. [PubMed] [Google Scholar]
  7. Dreyfus M. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol. 1988 Nov 5;204(1):79–94. doi: 10.1016/0022-2836(88)90601-8. [DOI] [PubMed] [Google Scholar]
  8. Ellinger T., Behnke D., Bujard H., Gralla J. D. Stalling of Escherichia coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. J Mol Biol. 1994 Jun 17;239(4):455–465. doi: 10.1006/jmbi.1994.1388. [DOI] [PubMed] [Google Scholar]
  9. Etchegaray J. P., Inouye M. Translational enhancement by an element downstream of the initiation codon in Escherichia coli. J Biol Chem. 1999 Apr 9;274(15):10079–10085. doi: 10.1074/jbc.274.15.10079. [DOI] [PubMed] [Google Scholar]
  10. Fargo D. C., Boynton J. E., Gillham N. W. Mutations altering the predicted secondary structure of a chloroplast 5' untranslated region affect its physical and biochemical properties as well as its ability to promote translation of reporter mRNAs both in the Chlamydomonas reinhardtii chloroplast and in Escherichia coli. Mol Cell Biol. 1999 Oct;19(10):6980–6990. doi: 10.1128/mcb.19.10.6980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fargo D. C., Zhang M., Gillham N. W., Boynton J. E. Shine-Dalgarno-like sequences are not required for translation of chloroplast mRNAs in Chlamydomonas reinhardtii chloroplasts or in Escherichia coli. Mol Gen Genet. 1998 Feb;257(3):271–282. doi: 10.1007/s004380050648. [DOI] [PubMed] [Google Scholar]
  12. Farwell M. A., Roberts M. W., Rabinowitz J. C. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol Microbiol. 1992 Nov;6(22):3375–3383. doi: 10.1111/j.1365-2958.1992.tb02205.x. [DOI] [PubMed] [Google Scholar]
  13. Fatscher H. P., Geisen R. M., Fuchs E. Only one out of the three strong ribosomal binding sites of the early region of bacteriophage T7 exhibits high translational efficiency in fragments of about 30 base pairs. Eur J Biochem. 1988 Aug 15;175(3):461–465. doi: 10.1111/j.1432-1033.1988.tb14217.x. [DOI] [PubMed] [Google Scholar]
  14. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gallie D. R., Kado C. I. A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc Natl Acad Sci U S A. 1989 Jan;86(1):129–132. doi: 10.1073/pnas.86.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  17. Golshani A., Kolev V., AbouHaidar M. G., Ivanov I. G. Epsilon as an initiator of translation of CAT mRNA in Escherichia coli. Biochem Biophys Res Commun. 2000 Jul 5;273(2):528–531. doi: 10.1006/bbrc.2000.2958. [DOI] [PubMed] [Google Scholar]
  18. Gualerzi C. O., Pon C. L. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990 Jun 26;29(25):5881–5889. doi: 10.1021/bi00477a001. [DOI] [PubMed] [Google Scholar]
  19. Hartz D., McPheeters D. S., Gold L. Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol. 1991 Mar 5;218(1):83–97. doi: 10.1016/0022-2836(91)90875-7. [DOI] [PubMed] [Google Scholar]
  20. Hartz D., McPheeters D. S., Green L., Gold L. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J Mol Biol. 1991 Mar 5;218(1):99–105. doi: 10.1016/0022-2836(91)90876-8. [DOI] [PubMed] [Google Scholar]
  21. Hartz D., McPheeters D. S., Traut R., Gold L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 1988;164:419–425. doi: 10.1016/s0076-6879(88)64058-4. [DOI] [PubMed] [Google Scholar]
  22. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995 Sep 8;270(36):20871–20874. doi: 10.1074/jbc.270.36.20871. [DOI] [PubMed] [Google Scholar]
  23. Hui A., de Boer H. A. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4762–4766. doi: 10.1073/pnas.84.14.4762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jacob W. F., Santer M., Dahlberg A. E. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4757–4761. doi: 10.1073/pnas.84.14.4757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Loechel S., Inamine J. M., Hu P. C. A novel translation initiation region from Mycoplasma genitalium that functions in Escherichia coli. Nucleic Acids Res. 1991 Dec 25;19(24):6905–6911. doi: 10.1093/nar/19.24.6905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCarthy J. E., Brimacombe R. Prokaryotic translation: the interactive pathway leading to initiation. Trends Genet. 1994 Nov;10(11):402–407. doi: 10.1016/0168-9525(94)90057-4. [DOI] [PubMed] [Google Scholar]
  27. McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
  28. McCarthy J. E., Schairer H. U., Sebald W. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation. EMBO J. 1985 Feb;4(2):519–526. doi: 10.1002/j.1460-2075.1985.tb03659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Melançon P., Leclerc D., Destroismaisons N., Brakier-Gingras L. The anti-Shine-Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. Biochemistry. 1990 Apr 3;29(13):3402–3407. doi: 10.1021/bi00465a037. [DOI] [PubMed] [Google Scholar]
  30. Mogridge J., Greenblatt J. Specific binding of Escherichia coli ribosomal protein S1 to boxA transcriptional antiterminator RNA. J Bacteriol. 1998 Apr;180(8):2248–2252. doi: 10.1128/jb.180.8.2248-2252.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moll I., Huber M., Grill S., Sairafi P., Mueller F., Brimacombe R., Londei P., Bläsi U. Evidence against an Interaction between the mRNA downstream box and 16S rRNA in translation initiation. J Bacteriol. 2001 Jun;183(11):3499–3505. doi: 10.1128/JB.183.11.3499-3505.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Connor M., Asai T., Squires C. L., Dahlberg A. E. Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8973–8978. doi: 10.1073/pnas.96.16.8973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. O'Connor M., Dahlberg A. E. Enhancement of translation by the epsilon element is independent of the sequence of the 460 region of 16S rRNA. Nucleic Acids Res. 2001 Apr 1;29(7):1420–1425. doi: 10.1093/nar/29.7.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Olins P. O., Rangwala S. H. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J Biol Chem. 1989 Oct 15;264(29):16973–16976. [PubMed] [Google Scholar]
  35. Ringquist S., Jones T., Snyder E. E., Gibson T., Boni I., Gold L. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry. 1995 Mar 21;34(11):3640–3648. doi: 10.1021/bi00011a019. [DOI] [PubMed] [Google Scholar]
  36. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G. D., Gold L. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992 May;6(9):1219–1229. doi: 10.1111/j.1365-2958.1992.tb01561.x. [DOI] [PubMed] [Google Scholar]
  37. Roberts M. W., Rabinowitz J. C. The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes. J Biol Chem. 1989 Feb 5;264(4):2228–2235. [PubMed] [Google Scholar]
  38. Sacerdot C., Caillet J., Graffe M., Eyermann F., Ehresmann B., Ehresmann C., Springer M., Romby P. The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol Microbiol. 1998 Aug;29(4):1077–1090. doi: 10.1046/j.1365-2958.1998.00995.x. [DOI] [PubMed] [Google Scholar]
  39. Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986 Apr 5;188(3):415–431. doi: 10.1016/0022-2836(86)90165-8. [DOI] [PubMed] [Google Scholar]
  40. Sengupta J., Agrawal R. K., Frank J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci U S A. 2001 Oct 2;98(21):11991–11996. doi: 10.1073/pnas.211266898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shean C. S., Gottesman M. E. Translation of the prophage lambda cl transcript. Cell. 1992 Aug 7;70(3):513–522. doi: 10.1016/0092-8674(92)90175-c. [DOI] [PubMed] [Google Scholar]
  42. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sprengart M. L., Fuchs E., Porter A. G. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 1996 Feb 1;15(3):665–674. [PMC free article] [PubMed] [Google Scholar]
  44. Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Subramanian A. R. Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol. 1983;28:101–142. doi: 10.1016/s0079-6603(08)60085-9. [DOI] [PubMed] [Google Scholar]
  46. Sørensen M. A., Fricke J., Pedersen S. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol. 1998 Jul 24;280(4):561–569. doi: 10.1006/jmbi.1998.1909. [DOI] [PubMed] [Google Scholar]
  47. Tzareva N. V., Makhno V. I., Boni I. V. Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett. 1994 Jan 10;337(2):189–194. doi: 10.1016/0014-5793(94)80271-8. [DOI] [PubMed] [Google Scholar]
  48. Van Etten W. J., Janssen G. R. An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol Microbiol. 1998 Mar;27(5):987–1001. doi: 10.1046/j.1365-2958.1998.00744.x. [DOI] [PubMed] [Google Scholar]
  49. Vogel U., Jensen K. F. Effects of the antiterminator BoxA on transcription elongation kinetics and ppGpp inhibition of transcription elongation in Escherichia coli. J Biol Chem. 1995 Aug 4;270(31):18335–18340. doi: 10.1074/jbc.270.31.18335. [DOI] [PubMed] [Google Scholar]
  50. Wu C. J., Janssen G. R. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli. J Bacteriol. 1997 Nov;179(21):6824–6830. doi: 10.1128/jb.179.21.6824-6830.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yarchuk O., Jacques N., Guillerez J., Dreyfus M. Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Mol Biol. 1992 Aug 5;226(3):581–596. doi: 10.1016/0022-2836(92)90617-s. [DOI] [PubMed] [Google Scholar]
  52. Zhang J., Deutscher M. P. A uridine-rich sequence required for translation of prokaryotic mRNA. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2605–2609. doi: 10.1073/pnas.89.7.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES