Skip to main content
RNA logoLink to RNA
. 2002 Oct;8(10):1308–1318. doi: 10.1017/s1355838202020034

The SBP2 and 15.5 kD/Snu13p proteins share the same RNA binding domain: identification of SBP2 amino acids important to SECIS RNA binding.

Christine Allmang 1, Philippe Carbon 1, Alain Krol 1
PMCID: PMC1370339  PMID: 12403468

Abstract

Selenoprotein synthesis in eukaryotes requires the selenocysteine insertion sequence (SECIS) RNA, a hairpin in the 3' untranslated region of selenoprotein mRNAs. The SECIS RNA is recognized by the SECIS-binding protein 2 (SBP2), which is a key player in this specialized translation machinery. The objective of this work was to obtain structural insight into the SBP2-SECIS RNA complex. Multiple sequence alignment revealed that SBP2 and the U4 snRNA-binding protein 15.5 kD/Snu13p share the same RNA binding domain of the L7A/L30 family, also found in the box H/ACA snoRNP protein Nhp2p and several ribosomal proteins. In corollary, we have detected a similar secondary structure motif in the SECIS and U4 RNAs. Combining the data of the crystal structure of the 15.5 kD-U4 snRNA complex, and the SBP2/15.5 kD sequence similarities, we designed a structure-guided strategy predicting 12 SBP2 amino acids that should be critical for SECIS RNA binding. Alanine substitution of these amino acids followed by gel shift assays of the SBP2 mutant proteins identified four residues whose mutation severely diminished or abolished SECIS RNA binding, the other eight provoking intermediate down effects. In addition to identifying key amino acids for SECIS recognition by SBP2, our findings led to the proposal that some of the recognition principles governing the 15.5 kD-U4 snRNA interaction must be similar in the SBP2-SECIS RNA complex.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anantharaman Vivek, Koonin Eugene V., Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002 Apr 1;30(7):1427–1464. doi: 10.1093/nar/30.7.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry M. J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature. 1991 Sep 19;353(6341):273–276. doi: 10.1038/353273a0. [DOI] [PubMed] [Google Scholar]
  3. Copeland P. R., Fletcher J. E., Carlson B. A., Hatfield D. L., Driscoll D. M. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 2000 Jan 17;19(2):306–314. doi: 10.1093/emboj/19.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Copeland P. R., Stepanik V. A., Driscoll D. M. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol Cell Biol. 2001 Mar;21(5):1491–1498. doi: 10.1128/MCB.21.5.1491-1498.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig A. W., Svitkin Y. V., Lee H. S., Belsham G. J., Sonenberg N. The La autoantigen contains a dimerization domain that is essential for enhancing translation. Mol Cell Biol. 1997 Jan;17(1):163–169. doi: 10.1128/mcb.17.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eberhart C. G., Wasserman S. A. The pelota locus encodes a protein required for meiotic cell division: an analysis of G2/M arrest in Drosophila spermatogenesis. Development. 1995 Oct;121(10):3477–3486. doi: 10.1242/dev.121.10.3477. [DOI] [PubMed] [Google Scholar]
  7. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  8. Fagegaltier D., Carbon P., Krol A. Distinctive features in the SelB family of elongation factors for selenoprotein synthesis. A glimpse of an evolutionary complexified translation apparatus. Biofactors. 2001;14(1-4):5–10. doi: 10.1002/biof.5520140102. [DOI] [PubMed] [Google Scholar]
  9. Fagegaltier D., Hubert N., Yamada K., Mizutani T., Carbon P., Krol A. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 2000 Sep 1;19(17):4796–4805. doi: 10.1093/emboj/19.17.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fagegaltier D., Lescure A., Walczak R., Carbon P., Krol A. Structural analysis of new local features in SECIS RNA hairpins. Nucleic Acids Res. 2000 Jul 15;28(14):2679–2689. doi: 10.1093/nar/28.14.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fletcher J. E., Copeland P. R., Driscoll D. M., Krol A. The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2. RNA. 2001 Oct;7(10):1442–1453. [PMC free article] [PubMed] [Google Scholar]
  12. Gladyshev V. N., Kryukov G. V. Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. Biofactors. 2001;14(1-4):87–92. doi: 10.1002/biof.5520140112. [DOI] [PubMed] [Google Scholar]
  13. Gottschalk A., Neubauer G., Banroques J., Mann M., Lührmann R., Fabrizio P. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP. EMBO J. 1999 Aug 16;18(16):4535–4548. doi: 10.1093/emboj/18.16.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grundner-Culemann E., Martin G. W., 3rd, Harney J. W., Berry M. J. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA. 1999 May;5(5):625–635. doi: 10.1017/s1355838299981542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henras A., Dez C., Noaillac-Depeyre J., Henry Y., Caizergues-Ferrer M. Accumulation of H/ACA snoRNPs depends on the integrity of the conserved central domain of the RNA-binding protein Nhp2p. Nucleic Acids Res. 2001 Jul 1;29(13):2733–2746. doi: 10.1093/nar/29.13.2733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henras A., Henry Y., Bousquet-Antonelli C., Noaillac-Depeyre J., Gélugne J. P., Caizergues-Ferrer M. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 1998 Dec 1;17(23):7078–7090. doi: 10.1093/emboj/17.23.7078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubert N., Walczak R., Carbon P., Krol A. A protein binds the selenocysteine insertion element in the 3'-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Res. 1996 Feb 1;24(3):464–469. doi: 10.1093/nar/24.3.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klein D. J., Schmeing T. M., Moore P. B., Steitz T. A. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001 Aug 1;20(15):4214–4221. doi: 10.1093/emboj/20.15.4214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koonin E. V., Bork P., Sander C. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme? Nucleic Acids Res. 1994 Jun 11;22(11):2166–2167. doi: 10.1093/nar/22.11.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuhn Jeffrey F., Tran Elizabeth J., Maxwell E. Stuart. Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Res. 2002 Feb 15;30(4):931–941. doi: 10.1093/nar/30.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Köhrl J., Brigelius-Flohé R., Böck A., Gärtner R., Meyer O., Flohé L. Selenium in biology: facts and medical perspectives. Biol Chem. 2000 Sep-Oct;381(9-10):849–864. doi: 10.1515/BC.2000.107. [DOI] [PubMed] [Google Scholar]
  22. Lescure Alain, Allmang Christine, Yamada Kenichiro, Carbon Philippe, Krol Alain. cDNA cloning, expression pattern and RNA binding analysis of human selenocysteine insertion sequence (SECIS) binding protein 2. Gene. 2002 May 29;291(1-2):279–285. doi: 10.1016/s0378-1119(02)00629-7. [DOI] [PubMed] [Google Scholar]
  23. Lescure Alain, Fagegaltier Delphine, Carbon Philippe, Krol Alain. Protein factors mediating selenoprotein synthesis. Curr Protein Pept Sci. 2002 Feb;3(1):143–151. doi: 10.2174/1389203023380783. [DOI] [PubMed] [Google Scholar]
  24. Low S. C., Grundner-Culemann E., Harney J. W., Berry M. J. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J. 2000 Dec 15;19(24):6882–6890. doi: 10.1093/emboj/19.24.6882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mao H., White S. A., Williamson J. R. A novel loop-loop recognition motif in the yeast ribosomal protein L30 autoregulatory RNA complex. Nat Struct Biol. 1999 Dec;6(12):1139–1147. doi: 10.1038/70081. [DOI] [PubMed] [Google Scholar]
  26. Martin G. W., 3rd, Harney J. W., Berry M. J. Functionality of mutations at conserved nucleotides in eukaryotic SECIS elements is determined by the identity of a single nonconserved nucleotide. RNA. 1998 Jan;4(1):65–73. [PMC free article] [PubMed] [Google Scholar]
  27. Moghadaszadeh B., Petit N., Jaillard C., Brockington M., Quijano Roy S., Merlini L., Romero N., Estournet B., Desguerre I., Chaigne D. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet. 2001 Sep;29(1):17–18. doi: 10.1038/ng713. [DOI] [PubMed] [Google Scholar]
  28. Méthot N., Song M. S., Sonenberg N. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol. 1996 Oct;16(10):5328–5334. doi: 10.1128/mcb.16.10.5328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nottrott S., Hartmuth K., Fabrizio P., Urlaub H., Vidovic I., Ficner R., Lührmann R. Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. EMBO J. 1999 Nov 1;18(21):6119–6133. doi: 10.1093/emboj/18.21.6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pfeifer H., Conrad M., Roethlein D., Kyriakopoulos A., Brielmeier M., Bornkamm G. W., Behne D. Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J. 2001 May;15(7):1236–1238. [PubMed] [Google Scholar]
  31. Puglisi J. D. mRNA processing: the 3'-end justifies the means. Nat Struct Biol. 2000 Apr;7(4):263–264. doi: 10.1038/74008. [DOI] [PubMed] [Google Scholar]
  32. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  33. Stevens S. W., Abelson J. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7226–7231. doi: 10.1073/pnas.96.13.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tang Thean Hock, Rozhdestvensky Timofey S., d'Orval Béatrice Clouet, Bortolin Marie-Line, Huber Harald, Charpentier Bruno, Branlant Christiane, Bachellerie Jean-Pierre, Brosius Jürgen, Hüttenhofer Alexander. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res. 2002 Feb 15;30(4):921–930. doi: 10.1093/nar/30.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tujebajeva R. M., Copeland P. R., Xu X. M., Carlson B. A., Harney J. W., Driscoll D. M., Hatfield D. L., Berry M. J. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 2000 Aug;1(2):158–163. doi: 10.1093/embo-reports/kvd033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J., Flohé L. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999 Aug 27;285(5432):1393–1396. doi: 10.1126/science.285.5432.1393. [DOI] [PubMed] [Google Scholar]
  37. Vidovic I., Nottrott S., Hartmuth K., Lührmann R., Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331–1342. doi: 10.1016/s1097-2765(00)00131-3. [DOI] [PubMed] [Google Scholar]
  38. Walczak R., Carbon P., Krol A. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation. RNA. 1998 Jan;4(1):74–84. [PMC free article] [PubMed] [Google Scholar]
  39. Walczak R., Westhof E., Carbon P., Krol A. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA. 1996 Apr;2(4):367–379. [PMC free article] [PubMed] [Google Scholar]
  40. Watkins N. J., Ségault V., Charpentier B., Nottrott S., Fabrizio P., Bachi A., Wilm M., Rosbash M., Branlant C., Lührmann R. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell. 2000 Oct 27;103(3):457–466. doi: 10.1016/s0092-8674(00)00137-9. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES