Skip to main content
RNA logoLink to RNA
. 2002 Nov;8(11):1416–1427. doi: 10.1017/s1355838202020198

The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons.

Takafumi Sunohara 1, Tatsuhiko Abo 1, Toshifumi Inada 1, Hiroji Aiba 1
PMCID: PMC1370348  PMID: 12458795

Abstract

Recent studies on endogenous SsrA-tagged proteins have revealed that the tagging could occur at a position corresponding to the normal termination codon. During the study of SsrA-mediated Lacl tagging (Abo et al., EMBO J, 2000 19:3762-3769), we found that a variant Lacl (Lacl deltaC1) lacking the last C-terminal amino acid residue is efficiently tagged in a stop codon-dependent manner. SsrA tagging of Lacl deltaC1 occurred efficiently without Lacl binding to the lac operators at any one of three stop codons. The C-terminal (R)LESG peptide of Lacl deltaC1 was shown to trigger the SsrA tagging of an unrelated protein (CRP) when fused to its C terminus. Mass spectrometry analysis of the purified fusion proteins revealed that SsrA tagging occurs at a position corresponding to the termination codon. The alteration of the amino acid sequence but not the nucleotide sequence of the C-terminal portion eliminated the tagging. We also showed that the tagging-provoking sequences cause an efficient translational readthrough at UGA but not UAA codons. In addition, we found that C-terminal dipeptides known to induce an efficient translation readthrough could cause an efficient tagging at stop codons. We conclude that the amino acid sequence of nascent polypeptide prior to stop codons is a major determinant for the SsrA tagging at all three stop codons.

Full Text

The Full Text of this article is available as a PDF (792.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Aiba H. Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization. Biochimie. 1996;78(11-12):1035–1042. doi: 10.1016/s0300-9084(97)86727-2. [DOI] [PubMed] [Google Scholar]
  2. Abo T., Inada T., Ogawa K., Aiba H. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 2000 Jul 17;19(14):3762–3769. doi: 10.1093/emboj/19.14.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abo T., Inada T., Ogawa K., Aiba H. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 2000 Jul 17;19(14):3762–3769. doi: 10.1093/emboj/19.14.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abo Tatsuhiko, Ueda Koji, Sunohara Takafumi, Ogawa Kazuko, Aiba Hiroji. SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells. 2002 Jul;7(7):629–638. doi: 10.1046/j.1365-2443.2002.00549.x. [DOI] [PubMed] [Google Scholar]
  5. Aiba H., Fujimoto S., Ozaki N. Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res. 1982 Feb 25;10(4):1345–1361. doi: 10.1093/nar/10.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  7. Björnsson A., Mottagui-Tabar S., Isaksson L. A. Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J. 1996 Apr 1;15(7):1696–1704. [PMC free article] [PubMed] [Google Scholar]
  8. Collier Justine, Binet Emmanuelle, Bouloc Philippe. Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli. Mol Microbiol. 2002 Aug;45(3):745–754. doi: 10.1046/j.1365-2958.2002.03045.x. [DOI] [PubMed] [Google Scholar]
  9. Datsenko K. A., Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640–6645. doi: 10.1073/pnas.120163297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drider Djamel, DiChiara Jeanne M., Wei Jin, Sharp Josh S., Bechhofer David H. Endonuclease cleavage of messenger RNA in Bacillus subtilis. Mol Microbiol. 2002 Mar;43(5):1319–1329. doi: 10.1046/j.1365-2958.2002.02830.x. [DOI] [PubMed] [Google Scholar]
  11. Gillet R., Felden B. Emerging views on tmRNA-mediated protein tagging and ribosome rescue. Mol Microbiol. 2001 Nov;42(4):879–885. doi: 10.1046/j.1365-2958.2001.02701.x. [DOI] [PubMed] [Google Scholar]
  12. Gottesman S., Roche E., Zhou Y., Sauer R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998 May 1;12(9):1338–1347. doi: 10.1101/gad.12.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayes Christopher S., Bose Baundauna, Sauer Robert T. Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem. 2002 Jul 8;277(37):33825–33832. doi: 10.1074/jbc.M205405200. [DOI] [PubMed] [Google Scholar]
  14. Hayes Christopher S., Bose Baundauna, Sauer Robert T. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. 2002 Mar 12;99(6):3440–3445. doi: 10.1073/pnas.052707199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herman C., Thévenet D., Bouloc P., Walker G. C., D'Ari R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 1998 May 1;12(9):1348–1355. doi: 10.1101/gad.12.9.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishizuka H., Hanamura A., Kunimura T., Aiba H. A lowered concentration of cAMP receptor protein caused by glucose is an important determinant for catabolite repression in Escherichia coli. Mol Microbiol. 1993 Oct;10(2):341–350. doi: 10.1111/j.1365-2958.1993.tb01960.x. [DOI] [PubMed] [Google Scholar]
  17. Karzai A. W., Roche E. D., Sauer R. T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol. 2000 Jun;7(6):449–455. doi: 10.1038/75843. [DOI] [PubMed] [Google Scholar]
  18. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  19. Konan K. V., Yanofsky C. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon. J Bacteriol. 1997 Mar;179(5):1774–1779. doi: 10.1128/jb.179.5.1774-1779.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Konan K. V., Yanofsky C. Role of ribosome release in regulation of tna operon expression in Escherichia coli. J Bacteriol. 1999 Mar;181(5):1530–1536. doi: 10.1128/jb.181.5.1530-1536.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loomis W. P., Koo J. T., Cheung T. P., Moseley S. L. A tripeptide sequence within the nascent DaaP protein is required for mRNA processing of a fimbrial operon in Escherichia coli. Mol Microbiol. 2001 Feb;39(3):693–707. doi: 10.1046/j.1365-2958.2001.02241.x. [DOI] [PubMed] [Google Scholar]
  22. Lovett P. S., Rogers E. J. Ribosome regulation by the nascent peptide. Microbiol Rev. 1996 Jun;60(2):366–385. doi: 10.1128/mr.60.2.366-385.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mottagui-Tabar S., Björnsson A., Isaksson L. A. The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J. 1994 Jan 1;13(1):249–257. doi: 10.1002/j.1460-2075.1994.tb06255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mottagui-Tabar S., Isaksson L. A. Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes. FEBS Lett. 1997 Sep 1;414(1):165–170. doi: 10.1016/s0014-5793(97)00978-2. [DOI] [PubMed] [Google Scholar]
  25. Muto A., Fujihara A., Ito K. I., Matsuno J., Ushida C., Himeno H. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells. 2000 Aug;5(8):627–635. doi: 10.1046/j.1365-2443.2000.00356.x. [DOI] [PubMed] [Google Scholar]
  26. Nakamura Y., Ito K., Isaksson L. A. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. doi: 10.1016/s0092-8674(00)81331-8. [DOI] [PubMed] [Google Scholar]
  27. Nakatogawa H., Ito K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol Cell. 2001 Jan;7(1):185–192. doi: 10.1016/s1097-2765(01)00166-6. [DOI] [PubMed] [Google Scholar]
  28. Nakatogawa Hitoshi, Ito Koreaki. The ribosomal exit tunnel functions as a discriminating gate. Cell. 2002 Mar 8;108(5):629–636. doi: 10.1016/s0092-8674(02)00649-9. [DOI] [PubMed] [Google Scholar]
  29. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
  30. Poole E. S., Brown C. M., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. doi: 10.1002/j.1460-2075.1995.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ranquet C., Geiselmann J., Toussaint A. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc Natl Acad Sci U S A. 2001 Aug 21;98(18):10220–10225. doi: 10.1073/pnas.171620598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roche E. D., Sauer R. T. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem. 2001 May 23;276(30):28509–28515. doi: 10.1074/jbc.M103864200. [DOI] [PubMed] [Google Scholar]
  33. Roche E. D., Sauer R. T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 1999 Aug 16;18(16):4579–4589. doi: 10.1093/emboj/18.16.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tate W. P., Mannering S. A. Three, four or more: the translational stop signal at length. Mol Microbiol. 1996 Jul;21(2):213–219. doi: 10.1046/j.1365-2958.1996.6391352.x. [DOI] [PubMed] [Google Scholar]
  35. Tenson Tanel, Ehrenberg Måns. Regulatory nascent peptides in the ribosomal tunnel. Cell. 2002 Mar 8;108(5):591–594. doi: 10.1016/s0092-8674(02)00669-4. [DOI] [PubMed] [Google Scholar]
  36. Ueda Koji, Yamamoto Yasufumi, Ogawa Kazuko, Abo Tatsuhiko, Inokuchi Hachiro, Aiba Hiroji. Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells. 2002 May;7(5):509–519. doi: 10.1046/j.1365-2443.2002.00537.x. [DOI] [PubMed] [Google Scholar]
  37. Withey Jeffrey H., Friedman David I. The biological roles of trans-translation. Curr Opin Microbiol. 2002 Apr;5(2):154–159. doi: 10.1016/s1369-5274(02)00299-0. [DOI] [PubMed] [Google Scholar]
  38. de la Cruz J., Vioque A. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA. RNA. 2001 Dec;7(12):1708–1716. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES