Skip to main content
RNA logoLink to RNA
. 2002 Nov;8(11):1444–1453. doi: 10.1017/s1355838202020551

Requirements for intron-mediated enhancement of gene expression in Arabidopsis.

Alan B Rose 1
PMCID: PMC1370350  PMID: 12458797

Abstract

To explore possible mechanisms of intron-mediated enhancement of gene expression, the features of PAT1 intron 1 required to elevate mRNA accumulation were systematically tested in transgenic Arabidopsis. This intron is remarkably resilient, retaining some ability to increase mRNA accumulation when splicing was prevented by mutation of 5' and 3' splice sites, branchpoint sequences, or when intron U-richness was reduced. Enhancement was abolished by simultaneously eliminating branchpoints and the 5' splice site, structures involved in the first two steps of spliceosome assembly. Although this suggests that the splicing machinery is required, intron splicing is clearly not enough to enhance mRNA accumulation. Five other introns were all efficiently spliced but varied widely in their ability to increase mRNA levels. Furthermore, PAT1 intron 1 was spliced but lost the ability to elevate mRNA accumulation when moved to the 3' UTR. These findings demonstrate that splicing per se is neither necessary nor sufficient for an intron to enhance mRNA accumulation, and suggest a mechanism that requires intron recognition by the splicing machinery but also involves nonconserved intron sequences.

Full Text

The Full Text of this article is available as a PDF (500.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. S., Wilhelm K. S., Thomashow M. F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 1994 Mar;24(5):701–713. doi: 10.1007/BF00029852. [DOI] [PubMed] [Google Scholar]
  2. Bentley D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr Opin Cell Biol. 1999 Jun;11(3):347–351. doi: 10.1016/S0955-0674(99)80048-9. [DOI] [PubMed] [Google Scholar]
  3. Brown J. W., Smith P., Simpson C. G. Arabidopsis consensus intron sequences. Plant Mol Biol. 1996 Nov;32(3):531–535. doi: 10.1007/BF00019105. [DOI] [PubMed] [Google Scholar]
  4. Bruhat A., Tourmente S., Chapel S., Sobrier M. L., Couderc J. L., Dastugue B. Regulatory elements in the first intron contribute to transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Nucleic Acids Res. 1990 May 25;18(10):2861–2867. doi: 10.1093/nar/18.10.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchman A. R., Berg P. Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol. 1988 Oct;8(10):4395–4405. doi: 10.1128/mcb.8.10.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987 Dec;1(10):1183–1200. doi: 10.1101/gad.1.10.1183. [DOI] [PubMed] [Google Scholar]
  7. Choi T., Huang M., Gorman C., Jaenisch R. A generic intron increases gene expression in transgenic mice. Mol Cell Biol. 1991 Jun;11(6):3070–3074. doi: 10.1128/mcb.11.6.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  9. Dahmus M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J Biol Chem. 1996 Aug 9;271(32):19009–19012. doi: 10.1074/jbc.271.32.19009. [DOI] [PubMed] [Google Scholar]
  10. Dean C., Favreau M., Bond-Nutter D., Bedbrook J., Dunsmuir P. Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell. 1989 Feb;1(2):201–208. doi: 10.1105/tpc.1.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deutsch M., Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 1999 Aug 1;27(15):3219–3228. doi: 10.1093/nar/27.15.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deyholos M. K., Sieburth L. E. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell. 2000 Oct;12(10):1799–1810. doi: 10.1105/tpc.12.10.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dreyfuss Gideon, Kim V. Narry, Kataoka Naoyuki. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002 Mar;3(3):195–205. doi: 10.1038/nrm760. [DOI] [PubMed] [Google Scholar]
  14. Fong Y. W., Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature. 2001 Dec 20;414(6866):929–933. doi: 10.1038/414929a. [DOI] [PubMed] [Google Scholar]
  15. Gallie D. R., Young T. E. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol. 1994 Nov;106(3):929–939. doi: 10.1104/pp.106.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gniadkowski M., Hemmings-Mieszczak M., Klahre U., Liu H. X., Filipowicz W. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. Nucleic Acids Res. 1996 Feb 15;24(4):619–627. doi: 10.1093/nar/24.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodall G. J., Filipowicz W. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 1989 Aug 11;58(3):473–483. doi: 10.1016/0092-8674(89)90428-5. [DOI] [PubMed] [Google Scholar]
  18. Hirose Y., Manley J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 2000 Jun 15;14(12):1415–1429. [PubMed] [Google Scholar]
  19. Hirose Y., Tacke R., Manley J. L. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 1999 May 15;13(10):1234–1239. doi: 10.1101/gad.13.10.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huang M. T., Gorman C. M. Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 1990 Feb 25;18(4):937–947. doi: 10.1093/nar/18.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Izaurralde E., Lewis J., McGuigan C., Jankowska M., Darzynkiewicz E., Mattaj I. W. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell. 1994 Aug 26;78(4):657–668. doi: 10.1016/0092-8674(94)90530-4. [DOI] [PubMed] [Google Scholar]
  22. Jeon J. S., Lee S., Jung K. H., Jun S. H., Kim C., An G. Tissue-preferential expression of a rice alpha-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol. 2000 Jul;123(3):1005–1014. doi: 10.1104/pp.123.3.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim E., Du L., Bregman D. B., Warren S. L. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol. 1997 Jan 13;136(1):19–28. doi: 10.1083/jcb.136.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ko C. H., Brendel V., Taylor R. D., Walbot V. U-richness is a defining feature of plant introns and may function as an intron recognition signal in maize. Plant Mol Biol. 1998 Mar;36(4):573–583. doi: 10.1023/a:1005932620374. [DOI] [PubMed] [Google Scholar]
  25. Lambermon M. H., Simpson G. G., Wieczorek Kirk D. A., Hemmings-Mieszczak M., Klahre U., Filipowicz W. UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation. EMBO J. 2000 Apr 3;19(7):1638–1649. doi: 10.1093/emboj/19.7.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Le Hir H., Gatfield D., Izaurralde E., Moore M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 2001 Sep 3;20(17):4987–4997. doi: 10.1093/emboj/20.17.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lim L. P., Burge C. B. A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11193–11198. doi: 10.1073/pnas.201407298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Long M., de Souza S. J., Gilbert W. Evolution of the intron-exon structure of eukaryotic genes. Curr Opin Genet Dev. 1995 Dec;5(6):774–778. doi: 10.1016/0959-437x(95)80010-3. [DOI] [PubMed] [Google Scholar]
  29. Lorković Z. J., Wieczorek Kirk D. A., Lambermon M. H., Filipowicz W. Pre-mRNA splicing in higher plants. Trends Plant Sci. 2000 Apr;5(4):160–167. doi: 10.1016/s1360-1385(00)01595-8. [DOI] [PubMed] [Google Scholar]
  30. Luehrsen K. R., Walbot V. Addition of A- and U-rich sequence increases the splicing efficiency of a deleted form of a maize intron. Plant Mol Biol. 1994 Feb;24(3):449–463. doi: 10.1007/BF00024113. [DOI] [PubMed] [Google Scholar]
  31. Luehrsen K. R., Walbot V. Intron creation and polyadenylation in maize are directed by AU-rich RNA. Genes Dev. 1994 May 1;8(9):1117–1130. doi: 10.1101/gad.8.9.1117. [DOI] [PubMed] [Google Scholar]
  32. Luo M. J., Reed R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14937–14942. doi: 10.1073/pnas.96.26.14937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Luo M. L., Zhou Z., Magni K., Christoforides C., Rappsilber J., Mann M., Reed R. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature. 2001 Oct 11;413(6856):644–647. doi: 10.1038/35098106. [DOI] [PubMed] [Google Scholar]
  34. Maas C., Laufs J., Grant S., Korfhage C., Werr W. The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol. 1991 Feb;16(2):199–207. doi: 10.1007/BF00020552. [DOI] [PubMed] [Google Scholar]
  35. Maniatis Tom, Reed Robin. An extensive network of coupling among gene expression machines. Nature. 2002 Apr 4;416(6880):499–506. doi: 10.1038/416499a. [DOI] [PubMed] [Google Scholar]
  36. Maniatis Tom, Tasic Bosiljka. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature. 2002 Jul 11;418(6894):236–243. doi: 10.1038/418236a. [DOI] [PubMed] [Google Scholar]
  37. Mascarenhas D., Mettler I. J., Pierce D. A., Lowe H. W. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol. 1990 Dec;15(6):913–920. doi: 10.1007/BF00039430. [DOI] [PubMed] [Google Scholar]
  38. Matsumoto K., Wassarman K. M., Wolffe A. P. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J. 1998 Apr 1;17(7):2107–2121. doi: 10.1093/emboj/17.7.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Meredith J., Storti R. V. Developmental regulation of the Drosophila tropomyosin II gene in different muscles is controlled by muscle-type-specific intron enhancer elements and distal and proximal promoter control elements. Dev Biol. 1993 Oct;159(2):500–512. doi: 10.1006/dbio.1993.1259. [DOI] [PubMed] [Google Scholar]
  40. Merritt H., McCullough A. J., Schuler M. A. Internal AU-rich elements modulate activity of two competing 3' splice sites in plant nuclei. Plant J. 1997 Oct;12(4):937–943. doi: 10.1046/j.1365-313x.1997.12040937.x. [DOI] [PubMed] [Google Scholar]
  41. Minvielle-Sebastia L., Keller W. mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol. 1999 Jun;11(3):352–357. doi: 10.1016/S0955-0674(99)80049-0. [DOI] [PubMed] [Google Scholar]
  42. Nagy E., Maquat L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998 Jun;23(6):198–199. doi: 10.1016/s0968-0004(98)01208-0. [DOI] [PubMed] [Google Scholar]
  43. Nash J., Walbot V. Bronze-2 Gene Expression and Intron Splicing Patterns in Cells and Tissues of Zea mays L. Plant Physiol. 1992 Sep;100(1):464–471. doi: 10.1104/pp.100.1.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Neugebauer K. M., Roth M. B. Transcription units as RNA processing units. Genes Dev. 1997 Dec 15;11(24):3279–3285. doi: 10.1101/gad.11.24.3279. [DOI] [PubMed] [Google Scholar]
  45. Norris S. R., Meyer S. E., Callis J. The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol. 1993 Mar;21(5):895–906. doi: 10.1007/BF00027120. [DOI] [PubMed] [Google Scholar]
  46. Okkema P. G., Harrison S. W., Plunger V., Aryana A., Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 1993 Oct;135(2):385–404. doi: 10.1093/genetics/135.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Orphanides George, Reinberg Danny. A unified theory of gene expression. Cell. 2002 Feb 22;108(4):439–451. doi: 10.1016/s0092-8674(02)00655-4. [DOI] [PubMed] [Google Scholar]
  48. Proudfoot Nick J., Furger Andre, Dye Michael J. Integrating mRNA processing with transcription. Cell. 2002 Feb 22;108(4):501–512. doi: 10.1016/s0092-8674(02)00617-7. [DOI] [PubMed] [Google Scholar]
  49. Rethmeier N., Seurinck J., Van Montagu M., Cornelissen M. Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process. Plant J. 1997 Oct;12(4):895–899. doi: 10.1046/j.1365-313x.1997.12040895.x. [DOI] [PubMed] [Google Scholar]
  50. Rippe R. A., Lorenzen S. I., Brenner D. A., Breindl M. Regulatory elements in the 5'-flanking region and the first intron contribute to transcriptional control of the mouse alpha 1 type I collagen gene. Mol Cell Biol. 1989 May;9(5):2224–2227. doi: 10.1128/mcb.9.5.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rose A. B., Beliakoff J. A. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol. 2000 Feb;122(2):535–542. doi: 10.1104/pp.122.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rose A. B., Last R. L. Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J. 1997 Mar;11(3):455–464. doi: 10.1046/j.1365-313x.1997.11030455.x. [DOI] [PubMed] [Google Scholar]
  53. Russo D. A., Petryk A., August C. S. Telomerase activity and phenotypic characterization in harvested bone marrow from a child with a germline cell cancer. Transplant Proc. 1997 Jun;29(4):2002–2002. doi: 10.1016/s0041-1345(97)00204-2. [DOI] [PubMed] [Google Scholar]
  54. Simpson Craig G., Thow Graham, Clark Gillian P., Jennings S. Nikki, Watters Jenny A., Brown John W. S. Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini-exon. RNA. 2002 Jan;8(1):47–56. doi: 10.1017/s1355838202015546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sinibaldi R. M., Mettler I. J. Intron splicing and intron-mediated enhanced expression in monocots. Prog Nucleic Acid Res Mol Biol. 1992;42:229–257. doi: 10.1016/s0079-6603(08)60577-2. [DOI] [PubMed] [Google Scholar]
  56. Sistrunk M. L., Antosiewicz D. M., Purugganan M. M., Braam J. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell. 1994 Nov;6(11):1553–1565. doi: 10.1105/tpc.6.11.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Snowden K. C., Buchhholz W. G., Hall T. C. Intron position affects expression from the tpi promoter in rice. Plant Mol Biol. 1996 Jun;31(3):689–692. doi: 10.1007/BF00042241. [DOI] [PubMed] [Google Scholar]
  58. Steinmetz E. J. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell. 1997 May 16;89(4):491–494. doi: 10.1016/s0092-8674(00)80230-5. [DOI] [PubMed] [Google Scholar]
  59. Strässer K., Hurt E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature. 2001 Oct 11;413(6856):648–652. doi: 10.1038/35098113. [DOI] [PubMed] [Google Scholar]
  60. Strässer Katja, Masuda Seiji, Mason Paul, Pfannstiel Jens, Oppizzi Marisa, Rodriguez-Navarro Susana, Rondón Ana G., Aguilera Andres, Struhl Kevin, Reed Robin. TREX is a conserved complex coupling transcription with messenger RNA export. Nature. 2002 Apr 28;417(6886):304–308. doi: 10.1038/nature746. [DOI] [PubMed] [Google Scholar]
  61. Sun X., Moriarty P. M., Maquat L. E. Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron position. EMBO J. 2000 Sep 1;19(17):4734–4744. doi: 10.1093/emboj/19.17.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wang Haiyang, Lee Myeong Min, Schiefelbein John W. Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiol. 2002 Jun;129(2):638–649. doi: 10.1104/pp.002675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wilusz C. J., Wang W., Peltz S. W. Curbing the nonsense: the activation and regulation of mRNA surveillance. Genes Dev. 2001 Nov 1;15(21):2781–2785. doi: 10.1101/gad.943701. [DOI] [PubMed] [Google Scholar]
  64. Zhang J., Sun X., Qian Y., LaDuca J. P., Maquat L. E. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol Cell Biol. 1998 Sep;18(9):5272–5283. doi: 10.1128/mcb.18.9.5272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zhang S. H., Lawton M. A., Hunter T., Lamb C. J. atpk1, a novel ribosomal protein kinase gene from Arabidopsis. I. Isolation, characterization, and expression. J Biol Chem. 1994 Jul 1;269(26):17586–17592. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES