Skip to main content
RNA logoLink to RNA
. 2002 Dec;8(12):1473–1481.

Identification of cells deficient in signaling-induced alternative splicing by use of somatic cell genetics.

Paul Sheives 1, Kristen W Lynch 1
PMCID: PMC1370353  PMID: 12515380

Abstract

In recent years, a growing number of mammalian genes have been shown to undergo alternative splicing in response to extracellular stimuli. However, the factors and pathways involved in such signal-induced alternative splicing are almost entirely unknown. Here we describe a novel method for identifying candidate trans-acting factors that are involved in regulating mammalian alternative splicing, using the activation-induced alternative splicing of the human CD45 gene in T cells as a model system. We generated a cell line that stably expresses a CD45 minigene-based GFP reporter construct, such that the levels of green-fluorescent protein (GFP) expressed in the cell reflect the splicing state of the endogenous CD45 gene. Following mutagenesis of this cell line, and multiple rounds of selection for cells that displayed aberrant levels of GFP expression, we isolated several cell lines that are at least partially defective in their ability to support regulated alternative splicing of endogenous CD45 pre-mRNA in response to cell stimulation. Thus we have successfully isolated mutants in a mammalian alternative splicing pathway through use of a somatic cell-based genetic screen. This study clearly demonstrates the feasibility of using genetic screens to further our understanding of the regulation of mammalian splicing, particularly as it occurs in response to environmental cues.

Full Text

The Full Text of this article is available as a PDF (363.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Birkeland M. L., Johnson P., Trowbridge I. S., Puré E. Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6734–6738. doi: 10.1073/pnas.86.17.6734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blencowe B. J., Issner R., Kim J., Mccaw P., Sharp P. A. New proteins related to the Ser-Arg family of splicing factors. RNA. 1995 Oct;1(8):852–865. [PMC free article] [PubMed] [Google Scholar]
  4. Boulton T. G., Cobb M. H. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 1991 May;2(5):357–371. doi: 10.1091/mbc.2.5.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chalfant C. E., Watson J. E., Bisnauth L. D., Kang J. B., Patel N., Obeid L. M., Eichler D. C., Cooper D. R. Insulin regulates protein kinase CbetaII expression through enhanced exon inclusion in L6 skeletal muscle cells. A novel mechanism of insulin- and insulin-like growth factor-i-induced 5' splice site selection. J Biol Chem. 1998 Jan 9;273(2):910–916. doi: 10.1074/jbc.273.2.910. [DOI] [PubMed] [Google Scholar]
  6. Chen I. T., Chasin L. A. Direct selection for mutations affecting specific splice sites in a hamster dihydrofolate reductase minigene. Mol Cell Biol. 1993 Jan;13(1):289–300. doi: 10.1128/mcb.13.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cáceres Javier F., Kornblihtt Alberto R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 2002 Apr;18(4):186–193. doi: 10.1016/s0168-9525(01)02626-9. [DOI] [PubMed] [Google Scholar]
  8. D'Ambrosio D., Cantrell D. A., Frati L., Santoni A., Testi R. Involvement of p21ras activation in T cell CD69 expression. Eur J Immunol. 1994 Mar;24(3):616–620. doi: 10.1002/eji.1830240319. [DOI] [PubMed] [Google Scholar]
  9. Dornan Saffron, Sebestyen Zsolt, Gamble John, Nagy Peter, Bodnar Andrea, Alldridge Lou, Doe Senam, Holmes Nick, Goff Lindsey K., Beverley Peter. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem. 2001 Nov 2;277(3):1912–1918. doi: 10.1074/jbc.M108386200. [DOI] [PubMed] [Google Scholar]
  10. Fairbrother W. G., Chasin L. A. Human genomic sequences that inhibit splicing. Mol Cell Biol. 2000 Sep;20(18):6816–6825. doi: 10.1128/mcb.20.18.6816-6825.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finco T. S., Kadlecek T., Zhang W., Samelson L. E., Weiss A. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity. 1998 Nov;9(5):617–626. doi: 10.1016/s1074-7613(00)80659-7. [DOI] [PubMed] [Google Scholar]
  12. Fu X. D. The superfamily of arginine/serine-rich splicing factors. RNA. 1995 Sep;1(7):663–680. [PMC free article] [PubMed] [Google Scholar]
  13. Genot E., Cantrell D. A. Ras regulation and function in lymphocytes. Curr Opin Immunol. 2000 Jun;12(3):289–294. doi: 10.1016/s0952-7915(00)00089-3. [DOI] [PubMed] [Google Scholar]
  14. Goldsmith M. A., Weiss A. Isolation and characterization of a T-lymphocyte somatic mutant with altered signal transduction by the antigen receptor. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6879–6883. doi: 10.1073/pnas.84.19.6879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grabowski P. J., Black D. L. Alternative RNA splicing in the nervous system. Prog Neurobiol. 2001 Oct;65(3):289–308. doi: 10.1016/s0301-0082(01)00007-7. [DOI] [PubMed] [Google Scholar]
  16. Grabowski P. J. Splicing regulation in neurons: tinkering with cell-specific control. Cell. 1998 Mar 20;92(6):709–712. doi: 10.1016/s0092-8674(00)81399-9. [DOI] [PubMed] [Google Scholar]
  17. Guthrie C. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science. 1991 Jul 12;253(5016):157–163. doi: 10.1126/science.1853200. [DOI] [PubMed] [Google Scholar]
  18. Hermiston Michelle L., Xu Zheng, Majeti Ravindra, Weiss Arthur. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest. 2002 Jan;109(1):9–14. doi: 10.1172/JCI14794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobsen M., Schweer D., Ziegler A., Gaber R., Schock S., Schwinzer R., Wonigeit K., Lindert R. B., Kantarci O., Schaefer-Klein J. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet. 2000 Dec;26(4):495–499. doi: 10.1038/82659. [DOI] [PubMed] [Google Scholar]
  20. König H., Ponta H., Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 1998 May 15;17(10):2904–2913. doi: 10.1093/emboj/17.10.2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li X., Zhao X., Fang Y., Jiang X., Duong T., Fan C., Huang C. C., Kain S. R. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem. 1998 Dec 25;273(52):34970–34975. doi: 10.1074/jbc.273.52.34970. [DOI] [PubMed] [Google Scholar]
  22. Liu C., Cheng J., Mountz J. D. Differential expression of human Fas mRNA species upon peripheral blood mononuclear cell activation. Biochem J. 1995 Sep 15;310(Pt 3):957–963. doi: 10.1042/bj3100957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lynch K. W., Weiss A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C and Ras. Mol Cell Biol. 2000 Jan;20(1):70–80. doi: 10.1128/mcb.20.1.70-80.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Majeti R., Bilwes A. M., Noel J. P., Hunter T., Weiss A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science. 1998 Jan 2;279(5347):88–91. doi: 10.1126/science.279.5347.88. [DOI] [PubMed] [Google Scholar]
  25. Majeti R., Xu Z., Parslow T. G., Olson J. L., Daikh D. I., Killeen N., Weiss A. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell. 2000 Dec 22;103(7):1059–1070. doi: 10.1016/s0092-8674(00)00209-9. [DOI] [PubMed] [Google Scholar]
  26. Modrek Barmak, Lee Christopher. A genomic view of alternative splicing. Nat Genet. 2002 Jan;30(1):13–19. doi: 10.1038/ng0102-13. [DOI] [PubMed] [Google Scholar]
  27. Patel N. A., Chalfant C. E., Watson J. E., Wyatt J. R., Dean N. M., Eichler D. C., Cooper D. R. Insulin regulates alternative splicing of protein kinase C beta II through a phosphatidylinositol 3-kinase-dependent pathway involving the nuclear serine/arginine-rich splicing factor, SRp40, in skeletal muscle cells. J Biol Chem. 2001 Mar 30;276(25):22648–22654. doi: 10.1074/jbc.M101260200. [DOI] [PubMed] [Google Scholar]
  28. Roberts G. C., Gooding C., Smith C. W. Smooth muscle alternative splicing induced in fibroblasts by heterologous expression of a regulatory gene. EMBO J. 1996 Nov 15;15(22):6301–6310. [PMC free article] [PubMed] [Google Scholar]
  29. Smith C. W., Valcárcel J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci. 2000 Aug;25(8):381–388. doi: 10.1016/s0968-0004(00)01604-2. [DOI] [PubMed] [Google Scholar]
  30. Smith M. A., Fanger G. R., O'Connor L. T., Bridle P., Maue R. A. Selective regulation of agrin mRNA induction and alternative splicing in PC12 cells by Ras-dependent actions of nerve growth factor. J Biol Chem. 1997 Jun 20;272(25):15675–15681. doi: 10.1074/jbc.272.25.15675. [DOI] [PubMed] [Google Scholar]
  31. Streuli M., Hall L. R., Saga Y., Schlossman S. F., Saito H. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J Exp Med. 1987 Nov 1;166(5):1548–1566. doi: 10.1084/jem.166.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takata M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994 Mar 15;13(6):1341–1349. doi: 10.1002/j.1460-2075.1994.tb06387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tchilian E. Z., Wallace D. L., Dawes R., Imami N., Burton C., Gotch F., Beverley P. C. A point mutation in CD45 may be associated with an increased risk of HIV-1 infection. AIDS. 2001 Sep 28;15(14):1892–1894. doi: 10.1097/00002030-200109280-00024. [DOI] [PubMed] [Google Scholar]
  34. Wang J., Shen L., Najafi H., Kolberg J., Matschinsky F. M., Urdea M., German M. Regulation of insulin preRNA splicing by glucose. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4360–4365. doi: 10.1073/pnas.94.9.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xie J., Black D. L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature. 2001 Apr 19;410(6831):936–939. doi: 10.1038/35073593. [DOI] [PubMed] [Google Scholar]
  36. Xie J., McCobb D. P. Control of alternative splicing of potassium channels by stress hormones. Science. 1998 Apr 17;280(5362):443–446. doi: 10.1126/science.280.5362.443. [DOI] [PubMed] [Google Scholar]
  37. Xu Zheng, Weiss Arthur. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol. 2002 Jul 22;3(8):764–771. doi: 10.1038/ni822. [DOI] [PubMed] [Google Scholar]
  38. Yablonski D., Kane L. P., Qian D., Weiss A. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 1998 Oct 1;17(19):5647–5657. doi: 10.1093/emboj/17.19.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES