Skip to main content
RNA logoLink to RNA
. 2002 Dec;8(12):1548–1557.

Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

Anna Perederina 1, Natalia Nevskaya 1, Oleg Nikonov 1, Alexei Nikulin 1, Philippe Dumas 1, Min Yao 1, Isao Tanaka 1, Maria Garber 1, George Gongadze 1, Stanislav Nikonov 1
PMCID: PMC1370360  PMID: 12515387

Abstract

The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  2. Brunel C., Romby P., Westhof E., Ehresmann C., Ehresmann B. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol. 1991 Sep 5;221(1):293–308. doi: 10.1016/0022-2836(91)80220-o. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  4. Fedorov R., Meshcheryakov V., Gongadze G., Fomenkova N., Nevskaya N., Selmer M., Laurberg M., Kristensen O., Al-Karadaghi S., Liljas A. Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallogr D Biol Crystallogr. 2001 Jun 21;57(Pt 7):968–976. doi: 10.1107/s0907444901006291. [DOI] [PubMed] [Google Scholar]
  5. Gongadze G. M., Tishchenko S. V., Sedelnikova S. E., Garber M. B. Ribosomal proteins, TL4 and TL5, from Thermus thermophilus form hybrid complexes with 5 S ribosomal RNA from different microorganisms. FEBS Lett. 1993 Sep 6;330(1):46–48. doi: 10.1016/0014-5793(93)80916-i. [DOI] [PubMed] [Google Scholar]
  6. Gourse R. L., Thurlow D. L., Gerbi S. A., Zimmermann R. A. Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc Natl Acad Sci U S A. 1981 May;78(5):2722–2726. doi: 10.1073/pnas.78.5.2722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harms J., Schluenzen F., Zarivach R., Bashan A., Gat S., Agmon I., Bartels H., Franceschi F., Yonath A. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell. 2001 Nov 30;107(5):679–688. doi: 10.1016/s0092-8674(01)00546-3. [DOI] [PubMed] [Google Scholar]
  8. Horne J. R., Erdmann V. A. Isolation and characterization of 5S RNA-protein complexes from Bacillus stearothermophilus and Escherichia coli ribosomes. Mol Gen Genet. 1972;119(4):337–344. doi: 10.1007/BF00272091. [DOI] [PubMed] [Google Scholar]
  9. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  10. Leontis N. B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001 Apr;7(4):499–512. doi: 10.1017/s1355838201002515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leontis N. B., Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 1998 Sep;4(9):1134–1153. doi: 10.1017/s1355838298980566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nakashima T., Yao M., Kawamura S., Iwasaki K., Kimura M., Tanaka I. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding. RNA. 2001 May;7(5):692–701. doi: 10.1017/s1355838201002345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
  14. Nissen P., Ippolito J. A., Ban N., Moore P. B., Steitz T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A. 2001 Apr 10;98(9):4899–4903. doi: 10.1073/pnas.081082398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sergiev P., Dokudovskaya S., Romanova E., Topin A., Bogdanov A., Brimacombe R., Dontsova O. The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA. Nucleic Acids Res. 1998 Jun 1;26(11):2519–2525. doi: 10.1093/nar/26.11.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Szymanski Maciej, Barciszewska Miroslawa Z., Erdmann Volker A., Barciszewski Jan. 5S Ribosomal RNA Database. Nucleic Acids Res. 2002 Jan 1;30(1):176–178. doi: 10.1093/nar/30.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tishchenko S., Nikulin A., Fomenkova N., Nevskaya N., Nikonov O., Dumas P., Moine H., Ehresmann B., Ehresmann C., Piendl W. Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii. J Mol Biol. 2001 Aug 10;311(2):311–324. doi: 10.1006/jmbi.2001.4877. [DOI] [PubMed] [Google Scholar]
  18. Vysotskaya V., Tischenko S., Garber M., Kern D., Mougel M., Ehresmann C., Ehresmann B. The ribosomal protein S8 from Thermus thermophilus VK1. Sequencing of the gene, overexpression of the protein in Escherichia coli and interaction with rRNA. Eur J Biochem. 1994 Jul 15;223(2):437–445. doi: 10.1111/j.1432-1033.1994.tb19011.x. [DOI] [PubMed] [Google Scholar]
  19. Westhof E., Romby P., Romaniuk P. J., Ebel J. P., Ehresmann C., Ehresmann B. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. J Mol Biol. 1989 May 20;207(2):417–431. doi: 10.1016/0022-2836(89)90264-7. [DOI] [PubMed] [Google Scholar]
  20. Yusupov M. M., Yusupova G. Z., Baucom A., Lieberman K., Earnest T. N., Cate J. H., Noller H. F. Crystal structure of the ribosome at 5.5 A resolution. Science. 2001 Mar 29;292(5518):883–896. doi: 10.1126/science.1060089. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES