Skip to main content
Gut logoLink to Gut
. 1993 May;34(5):630–636. doi: 10.1136/gut.34.5.630

Colonic fermentation of complex carbohydrates in patients with familial adenomatous polyposis.

D M Bradburn 1, J C Mathers 1, A Gunn 1, J Burn 1, P D Chapman 1, I D Johnston 1
PMCID: PMC1374180  PMID: 8389311

Abstract

Decreased production of butyric acid by colonic carbohydrate fermentation may predispose to colonic carcinogenesis, with the implicit assumption that the decrease in faecal butyrate found predates the development of the tumour. The influence of the genetic predisposition to colonic tumours and the presence of colonic polyps on in vitro fermentation of carbohydrates was examined. Stool samples from 11 normal controls and 20 patients with familial adenomatous polyposis (FAP) were incubated anaerobically with a range of carbohydrates. Fermentation patterns were similar for glucose and raffinose. These sugars produced different short chain fatty acid (SCFA) patterns from the two polysaccharides, starch and arabinogalactan, which differed one from the other. The FAP gene carriers with polyps produced less butyrate than normal controls (p < 0.005) and gene carriers without polyps (p < 0.05). There were corresponding decreases in the molar ratios of butyrate. Gene carriers without polyps produced less absolute amounts of acetate than normal controls (p < 0.05) and slightly less total SCFAs (p < 0.05) but were otherwise not significantly different. The decreased production of butyrate noted by other workers may be secondary to the tumours rather than a contributory cause.

Full text

PDF
630

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartram H. P., Scheppach W., Heid C., Fabian C., Kasper H. Effect of starch malabsorption on fecal bile acids and neutral sterols in humans: possible implications for colonic carcinogenesis. Cancer Res. 1991 Aug 15;51(16):4238–4242. [PubMed] [Google Scholar]
  2. Bingham S. A. Mechanisms and experimental and epidemiological evidence relating dietary fibre (non-starch polysaccharides) and starch to protection against large bowel cancer. Proc Nutr Soc. 1990 Jul;49(2):153–171. doi: 10.1079/pns19900021. [DOI] [PubMed] [Google Scholar]
  3. Bodmer W. F., Bailey C. J., Bodmer J., Bussey H. J., Ellis A., Gorman P., Lucibello F. C., Murday V. A., Rider S. H., Scambler P. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987 Aug 13;328(6131):614–616. doi: 10.1038/328614a0. [DOI] [PubMed] [Google Scholar]
  4. Burkitt D. P., Walker A. R., Painter N. S. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet. 1972 Dec 30;2(7792):1408–1412. doi: 10.1016/s0140-6736(72)92974-1. [DOI] [PubMed] [Google Scholar]
  5. Burn J., Chapman P., Delhanty J., Wood C., Lalloo F., Cachon-Gonzalez M. B., Tsioupra K., Church W., Rhodes M., Gunn A. The UK Northern region genetic register for familial adenomatous polyposis coli: use of age of onset, congenital hypertrophy of the retinal pigment epithelium, and DNA markers in risk calculations. J Med Genet. 1991 May;28(5):289–296. doi: 10.1136/jmg.28.5.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clausen M. R., Bonnén H., Mortensen P. B. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut. 1991 Aug;32(8):923–928. doi: 10.1136/gut.32.8.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cummings J. H. Short chain fatty acids in the human colon. Gut. 1981 Sep;22(9):763–779. doi: 10.1136/gut.22.9.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  9. Floch M. H., Binder H. J., Filburn B., Gershengoren W. The effect of bile acids on intestinal microflora. Am J Clin Nutr. 1972 Dec;25(12):1418–1426. doi: 10.1093/ajcn/25.12.1418. [DOI] [PubMed] [Google Scholar]
  10. Jass J. R. Diet, butyric acid and differentiation of gastrointestinal tract tumours. Med Hypotheses. 1985 Oct;18(2):113–118. doi: 10.1016/0306-9877(85)90043-x. [DOI] [PubMed] [Google Scholar]
  11. Kim Y. S., Tsao D., Siddiqui B., Whitehead J. S., Arnstein P., Bennett J., Hicks J. Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer. 1980 Mar 15;45(5 Suppl):1185–1192. doi: 10.1002/1097-0142(19800315)45:5+<1185::aid-cncr2820451324>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  12. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem. 1982 Feb 5;42(2):65–82. doi: 10.1007/BF00222695. [DOI] [PubMed] [Google Scholar]
  13. Lipkin M., Reddy B. S., Weisburger J., Schechter L. Nondegradation of fecal cholesterol in subjects at high risk for cancer of the large intestine. J Clin Invest. 1981 Jan;67(1):304–307. doi: 10.1172/JCI110027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Macfarlane G. T., Englyst H. N. Starch utilization by the human large intestinal microflora. J Appl Bacteriol. 1986 Mar;60(3):195–201. doi: 10.1111/j.1365-2672.1986.tb01073.x. [DOI] [PubMed] [Google Scholar]
  15. Mathers J. C., Fernandez F., Hill M. J., McCarthy P. T., Shearer M. J., Oxley A. Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. Br J Nutr. 1990 May;63(3):639–652. doi: 10.1079/bjn19900150. [DOI] [PubMed] [Google Scholar]
  16. McDougall E. I. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J. 1948;43(1):99–109. [PMC free article] [PubMed] [Google Scholar]
  17. Murday V., Slack J. Inherited disorders associated with colorectal cancer. Cancer Surv. 1989;8(1):139–157. [PubMed] [Google Scholar]
  18. Prasad K. N. Butyric acid: a small fatty acid with diverse biological functions. Life Sci. 1980 Oct 13;27(15):1351–1358. doi: 10.1016/0024-3205(80)90397-5. [DOI] [PubMed] [Google Scholar]
  19. Pye G., Evans D. F., Ledingham S., Hardcastle J. D. Gastrointestinal intraluminal pH in normal subjects and those with colorectal adenoma or carcinoma. Gut. 1990 Dec;31(12):1355–1357. doi: 10.1136/gut.31.12.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reddy B. S., Watanabe K. Effect of cholesterol metabolites and promoting effect of lithocholic acid in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1979 May;39(5):1521–1524. [PubMed] [Google Scholar]
  21. Spigelman A. D., Owen R. W., Hill M. J., Phillips R. K. Biliary bile acid profiles in familial adenomatous polyposis. Br J Surg. 1991 Mar;78(3):321–325. doi: 10.1002/bjs.1800780318. [DOI] [PubMed] [Google Scholar]
  22. Thornton J. R., Dryden A., Kelleher J., Losowsky M. S. Super-efficient starch absorption. A risk factor for colonic neoplasia? Dig Dis Sci. 1987 Oct;32(10):1088–1091. doi: 10.1007/BF01300193. [DOI] [PubMed] [Google Scholar]
  23. Thornton J. R. High colonic pH promotes colorectal cancer. Lancet. 1981 May 16;1(8229):1081–1083. doi: 10.1016/s0140-6736(81)92244-3. [DOI] [PubMed] [Google Scholar]
  24. Walker A. R., Walker B. F., Walker A. J. Faecal pH, dietary fibre intake, and proneness to colon cancer in four South African populations. Br J Cancer. 1986 Apr;53(4):489–495. doi: 10.1038/bjc.1986.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watne A. L., Lai H. Y., Mance T., Core S. Fecal steroids and bacterial flora in patients with polyposis coli. Am J Surg. 1976 Jan;131(1):42–46. doi: 10.1016/0002-9610(76)90418-9. [DOI] [PubMed] [Google Scholar]
  26. Weaver G. A., Krause J. A., Miller T. L., Wolin M. J. Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut. 1988 Nov;29(11):1539–1543. doi: 10.1136/gut.29.11.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES