Skip to main content
Gut logoLink to Gut
. 1993 Jun;34(6):823–828. doi: 10.1136/gut.34.6.823

Use of the conjugate of disulphated ursodeoxycholic acid with p-aminobenzoic acid for the detection of intestinal bacteria.

M Takahashi 1, T Konishi 1, Y Maeda 1, Y Matsugu 1, F Akazawa 1, T Eto 1, M Okajima 1, K Uchida 1, Y Masaoka 1, K Okada 1
PMCID: PMC1374270  PMID: 8314517

Abstract

The disulphate ester of ursodeoxycholyl-p-aminobenzoic acid (PABA-UCDA) was synthesised and compared with PABA-UDCA for its use in detection of intestinal bacteria. This compound, PABA-UDCA disulphate, had characters in common with PABA-UDCA in that it was deconjugated by cholylglycine hydrolase to release free PABA and bacteria that split glycocholic acid deconjugated PABA-UDCA disulphate. Further, in rat experiments urinary excretions of PABA were measured for six hours after oral administration of 15 mg PABA-UDCA disulphate. Ten control rats excreted (mean (SE) 188.2 (13.6) micrograms of PABA; 10 rats with an intestinal stagnant loop excreted more (530.1 (30.1) micrograms; p < 0.001): whereas 10 rats in each of three groups pretreated by oral administration of various antibiotics excreted less (polymixin B+tinidazole, 4.9 (1.6) micrograms; kanamycin, 31.0 (4.7) micrograms; clindamycin 40.9 (5.5) micrograms; p < 0.001). By contrast with PABA-UDCA, PABA-UDCA disulphate was not actively absorbed from any part of the small intestine in everted gut sac experiments, and showed poor recovery from bile after its intraileal instillation in rats. This indicated that PABA-UDCA disulphate is a single pass type substance in the gut and its oral administration test reflects the sum of the activities of bacteria in the small intestine and colon. The disulphate was easily soluble in water and this allowed its application in an in vitro test involving PABA-UDCA disulphate incubation with intraperitoneal pus (PABA-UDCA disulphate incubation test) from patients with peritonitis. This test was carried out on six patients with peritonitis, and the severity of bacterial peritonitis was expressed quantitatively. From the results obtained PABA-UDCA disulphate was considered a good material to detect intestinal bacteria.

Full text

PDF
823

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almé B., Bremmelgaard A., Sjövall J., Thomassen P. Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas-liquid chromatorgaphy-mass spectrometry. J Lipid Res. 1977 May;18(3):339–362. [PubMed] [Google Scholar]
  2. Cowen A. E., Korman M. G., Hofmann A. F., Cass O. W., Coffin S. B. Metabolism of lithocholate in healthy man. II. Enterohepatic circulation. Gastroenterology. 1975 Jul;69(1):67–76. [PubMed] [Google Scholar]
  3. Cowen A. E., Korman M. G., Hofmann A. F., Cass O. W. Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates. Gastroenterology. 1975 Jul;69(1):59–66. [PubMed] [Google Scholar]
  4. Cowen A. E., Korman M. G., Hofmann A. F., Thomas P. J. Metabolism of lithocholate in healthy man. III. Plasma disappearance of radioactivity after intravenous injection of labeled lithocholate and its derivatives. Gastroenterology. 1975 Jul;69(1):77–82. [PubMed] [Google Scholar]
  5. Eyssen H. J., Parmentier G. G., Mertens J. A. Sulfate bile acids in germ-free and conventional mice. Eur J Biochem. 1976 Jul 15;66(3):507–514. doi: 10.1111/j.1432-1033.1976.tb10576.x. [DOI] [PubMed] [Google Scholar]
  6. Fromm H., Hofmann A. F. Breath test for altered bile-acid metabolism. Lancet. 1971 Sep 18;2(7725):621–625. doi: 10.1016/s0140-6736(71)80068-5. [DOI] [PubMed] [Google Scholar]
  7. Goto J., Kato H., Hasegawa F., Nambara T. Synthesis of monosulfates of unconjugated and conjugated bile acids. Chem Pharm Bull (Tokyo) 1979 Jun;27(6):1402–1411. doi: 10.1248/cpb.27.1402. [DOI] [PubMed] [Google Scholar]
  8. Huijghebaert S. M., Hofmann A. F. Pancreatic carboxypeptidase hydrolysis of bile acid-amino conjugates: selective resistance of glycine and taurine amidates. Gastroenterology. 1986 Feb;90(2):306–315. doi: 10.1016/0016-5085(86)90925-x. [DOI] [PubMed] [Google Scholar]
  9. Huijghebaert S., Parmentier G., Eyssen H. Specificity of bile salt sulfatase activity in man, mouse and rat intestinal microflora. J Steroid Biochem. 1984 Apr;20(4A):907–912. doi: 10.1016/0022-4731(84)90404-7. [DOI] [PubMed] [Google Scholar]
  10. King C. E., Toskes P. P., Guilarte T. R., Lorenz E., Welkos S. L. Comparison of the one-gram d-[14C]xylose breath test to the [14C]bile acid breath test in patients with small-intestine bacterial overgrowth. Dig Dis Sci. 1980 Jan;25(1):53–58. doi: 10.1007/BF01312733. [DOI] [PubMed] [Google Scholar]
  11. King C. E., Toskes P. P., Spivey J. C., Lorenz E., Welkos S. Detection of small intestine bacterial overgrowth by means of a 14C-D-xylose breath test. Gastroenterology. 1979 Jul;77(1):75–82. [PubMed] [Google Scholar]
  12. Lack L., Weiner I. M. Intestinal bile salt transport: structure-activity relationships and other properties. Am J Physiol. 1966 May;210(5):1142–1152. doi: 10.1152/ajplegacy.1966.210.5.1142. [DOI] [PubMed] [Google Scholar]
  13. Low-Beer T. S., Tyor M. P., Lack L. Effects of sulfation of taurolithocholic and glycolithocholic acids on their intestinal transport. Gastroenterology. 1969 Apr;56(4):721–726. [PubMed] [Google Scholar]
  14. Makino I., Hashimoto H., Shinozaki K., Yoshino K., Nakagawa S. Sulfated and nonsulfated bile acids in urine, serum, and bile of patients with hepatobiliary diseases. Gastroenterology. 1975 Mar;68(3):545–553. [PubMed] [Google Scholar]
  15. Metz G., Gassull M. A., Drasar B. S., Jenkins D. J., Blendis L. M. Breath-hydrogen test for small-intestinal bacterial colonisation. Lancet. 1976 Mar 27;1(7961):668–669. doi: 10.1016/s0140-6736(76)92779-3. [DOI] [PubMed] [Google Scholar]
  16. Pacini N., Albini E., Ferrari A., Zanchi R., Marca G., Bandiera T. Transformation of sulfated bile acids by human intestinal microflora. Arzneimittelforschung. 1987 Aug;37(8):983–987. [PubMed] [Google Scholar]
  17. Rhodes J. M., Middleton P., Jewell D. P. The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand J Gastroenterol. 1979;14(3):333–336. doi: 10.3109/00365527909179892. [DOI] [PubMed] [Google Scholar]
  18. Sherr H. P., Sasaki Y., Newman A., Banwell J. G., Wagner H. N., Jr, Hendrix T. R. Detection of bacterial deconjugation of bile salts by a convenient breath-analysis technic. N Engl J Med. 1971 Sep 16;285(12):656–661. doi: 10.1056/NEJM197109162851204. [DOI] [PubMed] [Google Scholar]
  19. Stiehl A., Becker M., Czygan P., Fröhling W., Kommerell B., Rotthauwe H. W., Senn M. Bile acids and their sulphated and glucuronidated derivatives in bile, plasma, and urine of children with intrahepatic cholestasis: effects of phenobarbital treatment. Eur J Clin Invest. 1980 Aug;10(4):307–316. doi: 10.1111/j.1365-2362.1980.tb00038.x. [DOI] [PubMed] [Google Scholar]
  20. Takahashi M., Maeda Y., Tashiro H., Akazawa F., Okajima M., Yoshioka S., Matsugu Y., Toyota K., Masaoka Y. Basic studies on ursodeoxycholyl-para-aminobenzoic acid for evaluation of intestinal microflora. Scand J Gastroenterol. 1991 Jun;26(6):577–588. doi: 10.3109/00365529109043631. [DOI] [PubMed] [Google Scholar]
  21. Takahashi M., Maeda Y., Tashiro H., Eto T., Goto T., Sanada O. A new simple test for evaluation of intestinal bacteria. World J Surg. 1990 Sep-Oct;14(5):628–635. doi: 10.1007/BF01658810. [DOI] [PubMed] [Google Scholar]
  22. Thaysen E. H. Diagnostic value of the 14C-cholyglycine breath test. Clin Gastroenterol. 1977 Jan;6(1):227–245. [PubMed] [Google Scholar]
  23. WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamato C., Kinoshita K. A simple assay for measurement of urinary p-aminobenzoic acid in the oral pancreatic function test. Anal Biochem. 1979 Sep 15;98(1):13–17. doi: 10.1016/0003-2697(79)90699-7. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES