Abstract
Studies were carried out to test the hypothesis that the GSTM1 null phenotype at the mu (mu) class glutathione S-transferase 1 locus is associated with an increased predisposition to primary biliary cirrhosis. Starch gel electrophoresis was used to compare the prevalence of GSTM1 null phenotype 0 in patients with end stage primary biliary cirrhosis and a group of controls without evidence of liver disease. The prevalence of GSTM1 null phenotype in the primary biliary cirrhosis and control groups was similar; 39% and 45% respectively. In the primary biliary cirrhosis group all subjects were of the common GSTM1 0, GSTM1 A, GSTM1 B or GSTM1 A, B phenotypes while in the controls, one subject showed an isoform with an anodal mobility compatible with it being a product of the putative GSTM1*3 allele. As the GSTM1 phenotype might be changed by the disease process, the polymerase chain reaction was used to amplify the exon 4-exon 5 region of GSTM1 and show that in 13 control subjects and 11 patients with primary biliary cirrhosis, GSTM1 positive and negative genotypes were associated with corresponding GSTM1 expressing and non-expressing phenotypes respectively. The control subject with GSTM1 3 phenotype showed a positive genotype.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhattacharyya S. P., Saha N., Wee K. P. Glutathione-S-transferase (GST) polymorphism among ethnic groups in Singapore with report of additional alleles at loci 1 and 2. Gene Geogr. 1989 Apr;3(1):21–26. [PubMed] [Google Scholar]
- Board P., Coggan M., Johnston P., Ross V., Suzuki T., Webb G. Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharmacol Ther. 1990;48(3):357–369. doi: 10.1016/0163-7258(90)90054-6. [DOI] [PubMed] [Google Scholar]
- Bousquet O., Saigot T., Bernard P., Gerbal J. L., Sarrazin A. Hépatite secondaire à la prise d'acide tiénilique. Therapie. 1980 Mar-Apr;35(2):205–208. [PubMed] [Google Scholar]
- DeJong J. L., Mohandas T., Tu C. P. The human Hb (mu) class glutathione S-transferases are encoded by a dispersed gene family. Biochem Biophys Res Commun. 1991 Oct 15;180(1):15–22. doi: 10.1016/s0006-291x(05)81248-3. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
- Groppi A., Coutelle C., Fleury B., Iron A., Begueret J., Couzigou P. Glutathione S-transferase class mu in French alcoholic cirrhotic patients. Hum Genet. 1991 Sep;87(5):628–630. doi: 10.1007/BF00209028. [DOI] [PubMed] [Google Scholar]
- Harada S., Abei M., Tanaka N., Agarwal D. P., Goedde H. W. Liver glutathione S-transferase polymorphism in Japanese and its pharmacogenetic importance. Hum Genet. 1987 Apr;75(4):322–325. doi: 10.1007/BF00284101. [DOI] [PubMed] [Google Scholar]
- Hayes P. C., May L., Hayes J. D., Harrison D. J. Glutathione S-transferases in human liver cancer. Gut. 1991 Dec;32(12):1546–1549. doi: 10.1136/gut.32.12.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell S. C., Waring R. H., Haley C. S., Idle J. R., Smith R. L. Genetic aspects of the polymodally distributed sulphoxidation of S-carboxymethyl-L-cysteine in man. Br J Clin Pharmacol. 1984 Oct;18(4):507–521. doi: 10.1111/j.1365-2125.1984.tb02498.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olomu A. B., Vickers C. R., Waring R. H., Clements D., Babbs C., Warnes T. W., Elias E. High incidence of poor sulfoxidation in patients with primary biliary cirrhosis. N Engl J Med. 1988 Apr 28;318(17):1089–1092. doi: 10.1056/NEJM198804283181703. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Seidegård J., Vorachek W. R., Pero R. W., Pearson W. R. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7293–7297. doi: 10.1073/pnas.85.19.7293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shea T. C., Claflin G., Comstock K. E., Sanderson B. J., Burstein N. A., Keenan E. J., Mannervik B., Henner W. D. Glutathione transferase activity and isoenzyme composition in primary human breast cancers. Cancer Res. 1990 Nov 1;50(21):6848–6853. [PubMed] [Google Scholar]
- Strange R. C., Faulder C. G., Davis B. A., Hume R., Brown J. A., Cotton W., Hopkinson D. A. The human glutathione S-transferases: studies on the tissue distribution and genetic variation of the GST1, GST2 and GST3 isozymes. Ann Hum Genet. 1984 Jan;48(Pt 1):11–20. doi: 10.1111/j.1469-1809.1984.tb00829.x. [DOI] [PubMed] [Google Scholar]
- Strange R. C., Fryer A. A., Matharoo B., Zhao L., Broome J., Campbell D. A., Jones P., Pastor I. C., Singh R. V. The human glutathione S-transferases: comparison of isoenzyme expression in normal and astrocytoma brain. Biochim Biophys Acta. 1992 Jul 7;1139(3):222–228. doi: 10.1016/0925-4439(92)90138-d. [DOI] [PubMed] [Google Scholar]
- Strange R. C., Matharoo B., Faulder G. C., Jones P., Cotton W., Elder J. B., Deakin M. The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma. Carcinogenesis. 1991 Jan;12(1):25–28. doi: 10.1093/carcin/12.1.25. [DOI] [PubMed] [Google Scholar]
- Taylor J. B., Oliver J., Sherrington R., Pemble S. E. Structure of human glutathione S-transferase class Mu genes. Biochem J. 1991 Mar 1;274(Pt 2):587–593. doi: 10.1042/bj2740587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins P. B. Role of cytochromes P450 in drug metabolism and hepatotoxicity. Semin Liver Dis. 1990 Nov;10(4):235–250. doi: 10.1055/s-2008-1040480. [DOI] [PubMed] [Google Scholar]
- Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
- Wiencke J. K., Kelsey K. T., Lamela R. A., Toscano W. A., Jr Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res. 1990 Mar 1;50(5):1585–1590. [PubMed] [Google Scholar]
- Zhong S., Howie A. F., Ketterer B., Taylor J., Hayes J. D., Beckett G. J., Wathen C. G., Wolf C. R., Spurr N. K. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis. 1991 Sep;12(9):1533–1537. doi: 10.1093/carcin/12.9.1533. [DOI] [PubMed] [Google Scholar]
- Zimmerman H. J., Lewis J. H., Ishak K. G., Maddrey W. C. Ticrynafen-associated hepatic injury: analysis of 340 cases. Hepatology. 1984 Mar-Apr;4(2):315–323. doi: 10.1002/hep.1840040223. [DOI] [PubMed] [Google Scholar]