Skip to main content
Gut logoLink to Gut
. 1994 Mar;35(3):382–387. doi: 10.1136/gut.35.3.382

Human colorectal tumour infiltrating lymphocytes express activation markers and the CD45RO molecule, showing a primed population of lymphocytes in the tumour area.

B Ostenstad 1, T Lea 1, E Schlichting 1, M Harboe 1
PMCID: PMC1374595  PMID: 8150352

Abstract

This study investigated the phenotype of freshly isolated human tumour infiltrating lymphocytes (TIL) from 14 patients with colorectal tumours, and compared them with lymphocytes derived from the lamina propria of the unaffected mucosa and with lymphocytes derived from peripheral blood of the same patients. It was found that TIL expressed the activation markers CD25 and HLA-DR to a higher extent than the peripheral blood lymphocytes (p = 0.01), and that both lamina propria lymphocytes and TIL preferentially expressed the CD45RO + phenotype, associated with memory cells, in contrast with peripheral blood lymphocytes [corrected]. Both lamina propria lymphocytes and TIL contained few natural killer (NK) cells (CD3-CD56+) compared with peripheral blood lymphocytes (p = 0.001), and this was reflected in the cytotoxicity assays. After 1 to 2 weeks in culture with interleukin-2 100 U/ml, lymphocytes from all three compartments had a high cytolytic activity against all targets tested, consistent with the lymphokine activated killer cell phenomenon. No increase in the number of NK cells was noted after culture, but 20-30% of the T cells now coexpressed the CD56 molecule. This was most prominent in the CD8+ subset, but lymphokine activated killer cell activity was found in both CD4+ and CD8+ subsets. Possible tumour escape mechanisms are discussed.

Full text

PDF
382

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold P., Hyatt C., Johnson S., Hines K., Korcak L., Sanders M., Lotze M., Topalian S., Yang J., Rosenberg S. A. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: association with clinical response. J Natl Cancer Inst. 1991 Jul 3;83(13):932–937. doi: 10.1093/jnci/83.13.932. [DOI] [PubMed] [Google Scholar]
  2. Bukowski R. M., Sharfman W., Murthy S., Rayman P., Tubbs R., Alexander J., Budd G. T., Sergi J. S., Bauer L., Gibson V. Clinical results and characterization of tumor-infiltrating lymphocytes with or without recombinant interleukin 2 in human metastatic renal cell carcinoma. Cancer Res. 1991 Aug 15;51(16):4199–4205. [PubMed] [Google Scholar]
  3. Bull D. M., Bookman M. A. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest. 1977 May;59(5):966–974. doi: 10.1172/JCI108719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cordon-Cardo C., Fuks Z., Drobnjak M., Moreno C., Eisenbach L., Feldman M. Expression of HLA-A,B,C antigens on primary and metastatic tumor cell populations of human carcinomas. Cancer Res. 1991 Dec 1;51(23 Pt 1):6372–6380. [PubMed] [Google Scholar]
  5. Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
  6. Fiocchi C., Finke J. H. Tumor-infiltrating lymphocytes: new therapy, new hopes. Gastroenterology. 1990 Feb;98(2):531–534. doi: 10.1016/0016-5085(90)90851-q. [DOI] [PubMed] [Google Scholar]
  7. Golumbek P. T., Lazenby A. J., Levitsky H. I., Jaffee L. M., Karasuyama H., Baker M., Pardoll D. M. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991 Nov 1;254(5032):713–716. doi: 10.1126/science.1948050. [DOI] [PubMed] [Google Scholar]
  8. Halstensen T. S., Scott H., Brandtzaeg P. Human CD8+ intraepithelial T lymphocytes are mainly CD45RA-RB+ and show increased co-expression of CD45R0 in celiac disease. Eur J Immunol. 1990 Aug;20(8):1825–1830. doi: 10.1002/eji.1830200829. [DOI] [PubMed] [Google Scholar]
  9. Hérin M., Lemoine C., Weynants P., Vessière F., Van Pel A., Knuth A., Devos R., Boon T. Production of stable cytolytic T-cell clones directed against autologous human melanoma. Int J Cancer. 1987 Mar 15;39(3):390–396. doi: 10.1002/ijc.2910390320. [DOI] [PubMed] [Google Scholar]
  10. Itoh K., Platsoucas C. D., Balch C. M. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas. Activation by interleukin 2 and autologous tumor cells, and involvement of the T cell receptor. J Exp Med. 1988 Oct 1;168(4):1419–1441. doi: 10.1084/jem.168.4.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jass J. R. Lymphocytic infiltration and survival in rectal cancer. J Clin Pathol. 1986 Jun;39(6):585–589. doi: 10.1136/jcp.39.6.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kradin R. L., Kurnick J. T., Lazarus D. S., Preffer F. I., Dubinett S. M., Pinto C. E., Gifford J., Davidson E., Grove B., Callahan R. J. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet. 1989 Mar 18;1(8638):577–580. doi: 10.1016/s0140-6736(89)91609-7. [DOI] [PubMed] [Google Scholar]
  13. Kubota Y., Petras R. E., Easley K. A., Bauer T. W., Tubbs R. R., Fazio V. W. Ki-67-determined growth fraction versus standard staging and grading parameters in colorectal carcinoma. A multivariate analysis. Cancer. 1992 Dec 1;70(11):2602–2609. doi: 10.1002/1097-0142(19921201)70:11<2602::aid-cncr2820701106>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  14. Kurnick J. T., Kradin R. L., Blumberg R., Schneeberger E. E., Boyle L. A. Functional characterization of T lymphocytes propagated from human lung carcinomas. Clin Immunol Immunopathol. 1986 Mar;38(3):367–380. doi: 10.1016/0090-1229(86)90247-3. [DOI] [PubMed] [Google Scholar]
  15. McBride W. H., Thacker J. D., Comora S., Economou J. S., Kelley D., Hogge D., Dubinett S. M., Dougherty G. J. Genetic modification of a murine fibrosarcoma to produce interleukin 7 stimulates host cell infiltration and tumor immunity. Cancer Res. 1992 Jul 15;52(14):3931–3937. [PubMed] [Google Scholar]
  16. Michie C. A., McLean A., Alcock C., Beverley P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992 Nov 19;360(6401):264–265. doi: 10.1038/360264a0. [DOI] [PubMed] [Google Scholar]
  17. Miescher S., Whiteside T. L., Moretta L., von Fliedner V. Clonal and frequency analyses of tumor-infiltrating T lymphocytes from human solid tumors. J Immunol. 1987 Jun 1;138(11):4004–4011. [PubMed] [Google Scholar]
  18. Mizoguchi H., O'Shea J. J., Longo D. L., Loeffler C. M., McVicar D. W., Ochoa A. C. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science. 1992 Dec 11;258(5089):1795–1798. doi: 10.1126/science.1465616. [DOI] [PubMed] [Google Scholar]
  19. Momburg F., Koch S. Selective loss of beta 2-microglobulin mRNA in human colon carcinoma. J Exp Med. 1989 Jan 1;169(1):309–314. doi: 10.1084/jem.169.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Momburg F., Ziegler A., Harpprecht J., Möller P., Moldenhauer G., Hämmerling G. J. Selective loss of HLA-A or HLA-B antigen expression in colon carcinoma. J Immunol. 1989 Jan 1;142(1):352–358. [PubMed] [Google Scholar]
  21. Nitta T., Sato K., Okumura K., Steinman L. An analysis of T-cell-receptor variable-region genes in tumor-infiltrating lymphocytes within malignant tumors. Int J Cancer. 1991 Oct 21;49(4):545–550. doi: 10.1002/ijc.2910490412. [DOI] [PubMed] [Google Scholar]
  22. Pandolfino M. C., Viret C., Gervois N., Guilloux Y., Davodeau F., Diez E., Jotereau F. Specificity, T cell receptor diversity and activation requirements of CD4+ and CD8+ clones derived from human melanoma-infiltrating lymphocytes. Eur J Immunol. 1992 Jul;22(7):1795–1802. doi: 10.1002/eji.1830220719. [DOI] [PubMed] [Google Scholar]
  23. Pantel K., Schlimok G., Kutter D., Schaller G., Genz T., Wiebecke B., Backmann R., Funke I., Riethmüller G. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res. 1991 Sep 1;51(17):4712–4715. [PubMed] [Google Scholar]
  24. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pierce N. F., Cray W. C., Jr Determinants of the localization, magnitude, and duration of a specific mucosal IgA plasma cell response in enterically immunized rats. J Immunol. 1982 Mar;128(3):1311–1315. [PubMed] [Google Scholar]
  26. Plebanski M., Saunders M., Burtles S. S., Crowe S., Hooper D. C. Primary and secondary human in vitro T-cell responses to soluble antigens are mediated by subsets bearing different CD45 isoforms. Immunology. 1992 Jan;75(1):86–91. [PMC free article] [PubMed] [Google Scholar]
  27. Rabinowich H., Cohen R., Bruderman I., Steiner Z., Klajman A. Functional analysis of mononuclear cells infiltrating into tumors: lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res. 1987 Jan 1;47(1):173–177. [PubMed] [Google Scholar]
  28. Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., Simon P., Lotze M. T., Yang J. C., Seipp C. A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988 Dec 22;319(25):1676–1680. doi: 10.1056/NEJM198812223192527. [DOI] [PubMed] [Google Scholar]
  29. Rosenberg S. A., Spiess P., Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986 Sep 19;233(4770):1318–1321. doi: 10.1126/science.3489291. [DOI] [PubMed] [Google Scholar]
  30. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  31. Schwartzentruber D. J., Topalian S. L., Mancini M., Rosenberg S. A. Specific release of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and IFN-gamma by human tumor-infiltrating lymphocytes after autologous tumor stimulation. J Immunol. 1991 May 15;146(10):3674–3681. [PubMed] [Google Scholar]
  32. Shimizu Y., Iwatsuki S., Herberman R. B., Whiteside T. L. Clonal analysis of tumor-infiltrating lymphocytes from human primary and metastatic liver tumors. Int J Cancer. 1990 Nov 15;46(5):878–883. doi: 10.1002/ijc.2910460521. [DOI] [PubMed] [Google Scholar]
  33. Shimizu Y., Weidmann E., Iwatsuki S., Herberman R. B., Whiteside T. L. Characterization of human autotumor-reactive T-cell clones obtained from tumor-infiltrating lymphocytes in liver metastasis of gastric carcinoma. Cancer Res. 1991 Nov 15;51(22):6153–6162. [PubMed] [Google Scholar]
  34. Svennevig J. L., Lunde O. C., Holter J., Bjørgsvik D. Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer. 1984 Mar;49(3):375–377. doi: 10.1038/bjc.1984.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Topalian S. L., Muul L. M., Solomon D., Rosenberg S. A. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987 Aug 24;102(1):127–141. doi: 10.1016/s0022-1759(87)80018-2. [DOI] [PubMed] [Google Scholar]
  36. Topalian S. L., Solomon D., Rosenberg S. A. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol. 1989 May 15;142(10):3714–3725. [PubMed] [Google Scholar]
  37. Vose B. M., Gallagher P., Moore M., Schofield P. F. Specific and non-specific lymphocyte cytotoxicity in colon carcinoma. Br J Cancer. 1981 Dec;44(6):846–855. doi: 10.1038/bjc.1981.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weidmann E., Whiteside T. L., Giorda R., Herberman R. B., Trucco M. The T-cell receptor V beta gene usage in tumor-infiltrating lymphocytes and blood of patients with hepatocellular carcinoma. Cancer Res. 1992 Nov 1;52(21):5913–5920. [PubMed] [Google Scholar]
  39. Whiteside T. L., Heo D. S., Takagi S., Johnson J. T., Iwatsuki S., Herberman R. B. Cytolytic antitumor effector cells in long-term cultures of human tumor-infiltrating lymphocytes in recombinant interleukin 2. Cancer Immunol Immunother. 1988;26(1):1–10. doi: 10.1007/BF00199840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whiteside T. L., Miescher S., Hurlimann J., Moretta L., von Fliedner V. Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. Int J Cancer. 1986 Jun 15;37(6):803–811. doi: 10.1002/ijc.2910370602. [DOI] [PubMed] [Google Scholar]
  41. Yednock T. A., Rosen S. D. Lymphocyte homing. Adv Immunol. 1989;44:313–378. doi: 10.1016/s0065-2776(08)60645-8. [DOI] [PubMed] [Google Scholar]
  42. Yoo Y. K., Heo D. S., Hata K., Van Thiel D. H., Whiteside T. L. Tumor-infiltrating lymphocytes from human colon carcinomas. Functional and phenotypic characteristics after long-term culture in recombinant interleukin 2. Gastroenterology. 1990 Feb;98(2):259–268. [PubMed] [Google Scholar]
  43. Yoshino I., Yano T., Yoshikai Y., Murata M., Sugimachi K., Kimura G., Nomoto K. Oligoclonal T lymphocytes infiltrating human lung cancer tissues. Int J Cancer. 1991 Mar 12;47(5):654–658. doi: 10.1002/ijc.2910470504. [DOI] [PubMed] [Google Scholar]
  44. Zocchi M. R., Poggi A., Crosti F., Tongiani S., Rugarli C. Signalling in human tumour infiltrating lymphocytes: the CD28 molecule is functional and is physically associated with the CD45R0 molecule. Eur J Cancer. 1992;28A(4-5):749–754. doi: 10.1016/0959-8049(92)90108-e. [DOI] [PubMed] [Google Scholar]
  45. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES