Skip to main content
Gut logoLink to Gut
. 1994 Mar;35(3):401–407. doi: 10.1136/gut.35.3.401

Origin and development of exocrine pancreatic insufficiency in experimental renal failure.

M M Lerch 1, P Hoppe-Seyler 1, W Gerok 1
PMCID: PMC1374599  PMID: 7512063

Abstract

Chronic renal failure affects the physiological function of many organ systems. One of them is the exocrine pancreas. Although varying degrees of pancreatic insufficiency are the dominating clinical characteristic of uraemic pancreatic disease, it remains unclear whether this disease should be regarded as a manifestation of chronic pancreatitis, arising from recurring attacks of acute pancreatitis, or represents a distinct entity. The exocrine pancreas was studied in a model of experimental renal failure. The pancreas was removed from each rat at selected time points over eight weeks after subtotal nephrectomy and from a standard rat model of pancreatitis for comparison. The data show that the in vitro secretory response is considerably changed in renal failure (increased during early acute and decreased during chronic renal failure). While the pancreatic content of digestive enzymes progressively declines, DNA and protein synthesis increase over time. Acinar cell deletion is increased and accompanied by an increased rate of mitosis. This increased cellular turnover is not associated with tissue oedema, pancreatic fibrosis, inflammatory changes, autophagocytosis or subcellular redistribution of lysosomal hydrolases, all of which are characteristic for pancreatitis. The ultrastructural changes of uraemic pancreatic disease bear no resemblance to the changes seen in pancreatitis. It is concluded that the morphological and biochemical changes in early uraemic pancreatic disease are quite distinct, correspond with toxic damage of the pancreas, and are dominated by functional impairment and an increased cellular turnover.

Full text

PDF
401

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler G., Gerhards G., Schick J., Rohr G., Kern H. F. Effects of in vivo cholinergic stimulation of rat exocrine pancreas. Am J Physiol. 1983 Jun;244(6):G623–G629. doi: 10.1152/ajpgi.1983.244.6.G623. [DOI] [PubMed] [Google Scholar]
  2. Adler G., Rohr G., Kern H. F. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig Dis Sci. 1982 Nov;27(11):993–1002. doi: 10.1007/BF01391745. [DOI] [PubMed] [Google Scholar]
  3. Araki T., Ueda M., Taketa K., Kosaka K. Pancreatic-type hyperamylasemia in end-stage renal disease. Dig Dis Sci. 1989 Sep;34(9):1425–1427. doi: 10.1007/BF01538080. [DOI] [PubMed] [Google Scholar]
  4. BAGGENSTOSS A. H. The pancreas in uremia; a histopathologic study. Am J Pathol. 1948 Sep;24(5):1003–1017. [PMC free article] [PubMed] [Google Scholar]
  5. Barcenas C. G., Gonzalez-Molina M., Hull A. R. Association between acute pancreatitis and malignant hypertension with renal failure. Arch Intern Med. 1978 Aug;138(8):1254–1256. [PubMed] [Google Scholar]
  6. Brogström B., Hildebrand H. Lipase and co-lipase activities of human small intestinal contents after a liquid test meal. Scand J Gastroenterol. 1975;10(6):585–591. [PubMed] [Google Scholar]
  7. Darle N., Ekholm R., Edlund Y. Ultrastructure of the rat exocrine pancreas after long term intake of ethanol. Gastroenterology. 1970 Jan;58(1):62–72. [PubMed] [Google Scholar]
  8. Floege J., Alpers C. E., Burns M. W., Pritzl P., Gordon K., Couser W. G., Johnson R. J. Glomerular cells, extracellular matrix accumulation, and the development of glomerulosclerosis in the remnant kidney model. Lab Invest. 1992 Apr;66(4):485–497. [PubMed] [Google Scholar]
  9. HERMAN L., FITZGERALD P. J. The degenerative changes in pancreatic acinar cells caused by DL-ethionine. J Cell Biol. 1962 Feb;12:277–296. doi: 10.1083/jcb.12.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  12. Lerch M. M., Hoppe-Seyler P., Matern S. In vitro perfusion and incubation of rat pancreatic lobules in a kinetic system. Biomed Biochim Acta. 1991;50(9):1115–1125. [PubMed] [Google Scholar]
  13. Lerch M. M., Riehl J., Mann H., Nolte I., Sieberth H. G., Matern S. Sonographic changes of the pancreas in chronic renal failure. Gastrointest Radiol. 1989 Fall;14(4):311–314. doi: 10.1007/BF01889225. [DOI] [PubMed] [Google Scholar]
  14. Lerch M. M., Saluja A. K., Dawra R., Ramaraò P., Saluja M., Steer M. L. Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology. 1992 Jul;103(1):205–213. doi: 10.1016/0016-5085(92)91114-j. [DOI] [PubMed] [Google Scholar]
  15. López-De León A., Rojkind M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem. 1985 Aug;33(8):737–743. doi: 10.1177/33.8.2410480. [DOI] [PubMed] [Google Scholar]
  16. MORRISON A. B. Experimentally induced chronic renal insufficiency in the rat. Lab Invest. 1962 Apr;11:321–332. [PubMed] [Google Scholar]
  17. McDonald J. K., Ellis S. On the substrate specificity of cathepsins B1 and B2 including a new fluorogenic substrate for cathepsin B1. Life Sci. 1975 Oct 15;17(8):1269–1276. doi: 10.1016/0024-3205(75)90137-x. [DOI] [PubMed] [Google Scholar]
  18. Otte M., Stahlheber H., Forell M. M., Dobbelstein H., Richert J., Thurmayr R., Thurmayr G. R. Exokrine Pankreasfunktion bei chronischer Niereninsuffizienz. Klin Wochenschr. 1975 Jan 15;53(2):67–72. doi: 10.1007/BF01482711. [DOI] [PubMed] [Google Scholar]
  19. Owyang C., Miller L. J., DiMagno E. P., Mitchell J. C., 3rd, Go V. L. Pancreatic exocrine function in severe human chronic renal failure. Gut. 1982 May;23(5):357–361. doi: 10.1136/gut.23.5.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Plomp P. J., Wolvetang E. J., Groen A. K., Meijer A. J., Gordon P. B., Seglen P. O. Energy dependence of autophagic protein degradation in isolated rat hepatocytes. Eur J Biochem. 1987 Apr 1;164(1):197–203. doi: 10.1111/j.1432-1033.1987.tb11011.x. [DOI] [PubMed] [Google Scholar]
  21. Putzke H. P., Jonas L., Bienengräber A. Vascular chronic-fibrosing pancreatitis of the rat after 5/6-nephrectomy. Exp Pathol (Jena) 1977 Sep-Oct;14(3-4):113–121. doi: 10.1016/s0014-4908(77)80057-4. [DOI] [PubMed] [Google Scholar]
  22. Saluja A., Hashimoto S., Saluja M., Powers R. E., Meldolesi J., Steer M. L. Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol. 1987 Oct;253(4 Pt 1):G508–G516. doi: 10.1152/ajpgi.1987.253.4.G508. [DOI] [PubMed] [Google Scholar]
  23. Saluja M., Saluja A., Lerch M. M., Steer M. L. A plasma protease which is expressed during supramaximal stimulation causes in vitro subcellular redistribution of lysosomal enzymes in rat exocrine pancreas. J Clin Invest. 1991 Apr;87(4):1280–1285. doi: 10.1172/JCI115130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sarles H., Tiscornia O., Palasciano G., Brasca A., Hage G., Devaux M. A., Gullo L. Effects of chronic intragastric ethanol administration on canine exocrine pancreatic secretion. Scand J Gastroenterol. 1973;8(1):85–96. [PubMed] [Google Scholar]
  25. Van Dyke J. A., Rutsky E. A., Stanley R. J. Acute pancreatitis associated with end-stage renal disease. Radiology. 1986 Aug;160(2):403–405. doi: 10.1148/radiology.160.2.3726119. [DOI] [PubMed] [Google Scholar]
  26. Vaziri N. D., Dure-Smith B., Miller R., Mirahmadi M. Pancreatic pathology in chronic dialysis patients--an autopsy study of 78 cases. Nephron. 1987;46(4):347–349. doi: 10.1159/000184387. [DOI] [PubMed] [Google Scholar]
  27. Watanabe O., Baccino F. M., Steer M. L., Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol. 1984 Apr;246(4 Pt 1):G457–G467. doi: 10.1152/ajpgi.1984.246.4.G457. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES