Skip to main content
Gut logoLink to Gut
. 1994 Apr;35(4):441–444. doi: 10.1136/gut.35.4.441

Intestinal absorption of peptide drugs: advances in our understanding and clinical implications.

S M Catnach 1, P D Fairclough 1, S M Hammond 1
PMCID: PMC1374786  PMID: 8174977

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addison J. M., Burston D., Dalrymple J. A., Matthews D. M., Payne J. W., Sleisenger M. H., Wilkinson S. A common mechanism for transport of di- and tri-peptides by hamster jejunum in vitro. Clin Sci Mol Med. 1975 Oct;49(4):313–322. doi: 10.1042/cs0490313. [DOI] [PubMed] [Google Scholar]
  2. Addison J. M., Burston D., Matthews D. M. Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clin Sci. 1972 Dec;43(6):907–911. doi: 10.1042/cs0430907. [DOI] [PubMed] [Google Scholar]
  3. Adibi S. A. Intestinal phase of protein assimilation in man. Am J Clin Nutr. 1976 Feb;29(2):205–215. doi: 10.1093/ajcn/29.2.205. [DOI] [PubMed] [Google Scholar]
  4. Bai P. F., Subramanian P., Mosberg H. I., Amidon G. L. Structural requirements for the intestinal mucosal-cell peptide transporter: the need for N-terminal alpha-amino group. Pharm Res. 1991 May;8(5):593–599. doi: 10.1023/a:1015848522228. [DOI] [PubMed] [Google Scholar]
  5. Dyer J., Beechey R. B., Gorvel J. P., Smith R. T., Wootton R., Shirazi-Beechey S. P. Glycyl-L-proline transport in rabbit enterocyte basolateral-membrane vesicles. Biochem J. 1990 Aug 1;269(3):565–571. doi: 10.1042/bj2690565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fairclough P. D., Silk D. B., Clark M. L., Matthews D. M., Marrs T. C., Burston D., Clegg K. M. Effect of glycylglycine on absorption from human jejunum of an amino acid mixture simulating casein and a partial enzymic hydrolysate of casein containing small peptides. Clin Sci Mol Med. 1977 Jul;53(1):27–33. doi: 10.1042/cs0530027. [DOI] [PubMed] [Google Scholar]
  7. Fricker G., Bruns C., Munzer J., Briner U., Albert R., Kissel T., Vonderscher J. Intestinal absorption of the octapeptide SMS 201-995 visualized by fluorescence derivatization. Gastroenterology. 1991 Jun;100(6):1544–1552. doi: 10.1016/0016-5085(91)90651-z. [DOI] [PubMed] [Google Scholar]
  8. Ganapathy, Leibach F. H. Is intestinal peptide transport energized by a proton gradient? Am J Physiol. 1985 Aug;249(2 Pt 1):G153–G160. doi: 10.1152/ajpgi.1985.249.2.G153. [DOI] [PubMed] [Google Scholar]
  9. Ganapathy V., Leibach F. H. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J Biol Chem. 1983 Dec 10;258(23):14189–14192. [PubMed] [Google Scholar]
  10. Hori R., Okano T., Kato M., Maegawa H., Inui K. Intestinal absorption of cephalosporin antibiotics: correlation between intestinal absorption and brush-border membrane transport. J Pharm Pharmacol. 1988 Sep;40(9):646–647. doi: 10.1111/j.2042-7158.1988.tb05327.x. [DOI] [PubMed] [Google Scholar]
  11. Inui K., Okano T., Maegawa H., Kato M., Takano M., Hori R. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J Pharmacol Exp Ther. 1988 Oct;247(1):235–241. [PubMed] [Google Scholar]
  12. Kramer W., Dechent C., Girbig F., Gutjahr U., Neubauer H. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase. Biochim Biophys Acta. 1990 Nov 30;1030(1):41–49. doi: 10.1016/0005-2736(90)90236-h. [DOI] [PubMed] [Google Scholar]
  13. Kramer W., Girbig F., Gutjahr U., Kleemann H. W., Leipe I., Urbach H., Wagner A. Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and beta-lactam antibiotics. Biochim Biophys Acta. 1990 Aug 10;1027(1):25–30. doi: 10.1016/0005-2736(90)90043-n. [DOI] [PubMed] [Google Scholar]
  14. Kramer W., Girbig F., Gutjahr U., Kowalewski S., Adam F., Schiebler W. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Eur J Biochem. 1992 Mar 1;204(2):923–930. doi: 10.1111/j.1432-1033.1992.tb16713.x. [DOI] [PubMed] [Google Scholar]
  15. Kramer W., Girbig F., Leipe I., Petzoldt E. Direct photoaffinity labelling of binding proteins for beta-lactam antibiotics in rabbit intestinal brush border membranes with [3H]benzylpenicillin. Biochem Pharmacol. 1988 Jun 15;37(12):2427–2435. doi: 10.1016/0006-2952(88)90370-x. [DOI] [PubMed] [Google Scholar]
  16. Kramer W. Identification of identical binding polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling. Biochim Biophys Acta. 1987 Nov 27;905(1):65–74. doi: 10.1016/0005-2736(87)90009-5. [DOI] [PubMed] [Google Scholar]
  17. Lane A. E., Silk D. B., Clark M. L. Absorption of two proline containing peptides by rat small intestine in vivo. J Physiol. 1975 Jun;248(1):143–149. doi: 10.1113/jphysiol.1975.sp010966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lowther J., Hammond S. M., Russell K., Fairclough P. D. Uptake of cephalosporins by human intestinal brush-border membrane vesicles. J Antimicrob Chemother. 1990 Jan;25(1):183–184. doi: 10.1093/jac/25.1.183. [DOI] [PubMed] [Google Scholar]
  19. Mathews D. M., Adibi S. A. Peptide absorption. Gastroenterology. 1976 Jul;71(1):151–161. [PubMed] [Google Scholar]
  20. Matthews D. M., Addison J. M., Burston D. Evidence for active transport of the dipeptide carnosine (beta-alanyl-L-histidine) by hamster jejunum in vitro. Clin Sci Mol Med. 1974 Jun;46(6):693–705. doi: 10.1042/cs0460693. [DOI] [PubMed] [Google Scholar]
  21. Matthews D. M., Gandy R. H., Taylor E., Burston D. Influx of two dipeptides, glycylsarcosine and L-glutamyl-L-glutamic acid, into hamster jejunum in vitro. Clin Sci (Lond) 1979 Jan;56(1):15–23. doi: 10.1042/cs0560015. [DOI] [PubMed] [Google Scholar]
  22. Minami H., Morse E. L., Adibi S. A. Characteristics and mechanism of glutamine-dipeptide absorption in human intestine. Gastroenterology. 1992 Jul;103(1):3–11. doi: 10.1016/0016-5085(92)91088-l. [DOI] [PubMed] [Google Scholar]
  23. NEWEY H., SMYTH D. H. Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol. 1960 Jul;152:367–380. doi: 10.1113/jphysiol.1960.sp006493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. NEWEY H., SMYTH D. H. The intestinal absorption of some dipeptides. J Physiol. 1959 Jan 28;145(1):48–56. doi: 10.1113/jphysiol.1959.sp006125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rajendran V. M., Ansari S. A., Harig J. M., Adams M. B., Khan A. H., Ramaswamy K. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Gastroenterology. 1985 Dec;89(6):1298–1304. doi: 10.1016/0016-5085(85)90646-8. [DOI] [PubMed] [Google Scholar]
  26. Silk D. B. Peptide transport. Clin Sci (Lond) 1981 Jun;60(6):607–615. doi: 10.1042/cs0600607. [DOI] [PubMed] [Google Scholar]
  27. Silk D. B. Progress report. Peptide absorption in man. Gut. 1974 Jun;15(6):494–501. doi: 10.1136/gut.15.6.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sinko P. J., Amidon G. L. Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ. Pharm Res. 1988 Oct;5(10):645–650. doi: 10.1023/a:1015974920682. [DOI] [PubMed] [Google Scholar]
  29. Sleisenger M. H., Burston D., Dalrymple J. A., Wilkinson S., Mathews D. M. Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology. 1976 Jul;71(1):76–81. [PubMed] [Google Scholar]
  30. Takaori K., Burton J., Donowitz M. The transport of an intact oligopeptide across adult mammalian jejunum. Biochem Biophys Res Commun. 1986 Jun 13;137(2):682–687. doi: 10.1016/0006-291x(86)91132-0. [DOI] [PubMed] [Google Scholar]
  31. Taylor E., Burston D., Matthews D. M. Influx of glycylsarcosine and L-lysyl-L-lysine into hamster jejunum in vitro. Clin Sci (Lond) 1980 Mar;58(3):221–225. doi: 10.1042/cs0580221. [DOI] [PubMed] [Google Scholar]
  32. Tsuji A., Terasaki T., Tamai I., Hirooka H. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine. J Pharmacol Exp Ther. 1987 May;241(2):594–601. [PubMed] [Google Scholar]
  33. Westphal J. F., Deslandes A., Brogard J. M., Carbon C. Reappraisal of amoxycillin absorption kinetics. J Antimicrob Chemother. 1991 May;27(5):647–654. doi: 10.1093/jac/27.5.647. [DOI] [PubMed] [Google Scholar]
  34. Westphal J. F., Trouvin J. H., Deslandes A., Carbon C. Nifedipine enhances amoxicillin absorption kinetics and bioavailability in humans. J Pharmacol Exp Ther. 1990 Oct;255(1):312–317. [PubMed] [Google Scholar]
  35. Williams P. E. Factors affecting the oral absorption of esterified antibiotics. Biochem Soc Trans. 1985 Apr;13(2):511–513. doi: 10.1042/bst0130511. [DOI] [PubMed] [Google Scholar]
  36. Yoshikawa T., Muranushi N., Yoshida M., Oguma T., Hirano K., Yamada H. Transport characteristics of ceftibuten (7432-S), a new oral cephem, in rat intestinal brush-border membrane vesicles: proton-coupled and stereoselective transport of ceftibuten. Pharm Res. 1989 Apr;6(4):302–307. doi: 10.1023/a:1015994323639. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES