Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Jan;62(1):77–85. doi: 10.1086/301686

Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome.

D L Mallery 1, B Tanganelli 1, S Colella 1, H Steingrimsdottir 1, A J van Gool 1, C Troelstra 1, M Stefanini 1, A R Lehmann 1
PMCID: PMC1376810  PMID: 9443879

Abstract

Cockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms. In nine of the patients, the mutations resulted in truncated products in both alleles, whereas, in the other seven, at least one allele contained a single amino acid change. The latter mutations were confined to the C-terminal two-thirds of the protein and were shown to be inactivating by their failure to restore UV-irradiation resistance to hamster UV61 cells, which are known to be defective in the CSB gene. Neither the site nor the nature of the mutation correlated with the severity of the clinical features. Severe truncations were found in different patients with either classical or early-onset forms of the disease.

Full Text

The Full Text of this article is available as a PDF (315.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arlett C. F., Lehmann A. R., Giannelli F., Ramsay C. A. A human subject with a new defect in repair of ultraviolet damage. J Invest Dermatol. 1978 Apr;70(4):173–177. doi: 10.1111/1523-1747.ep12541290. [DOI] [PubMed] [Google Scholar]
  2. Balajee A. S., May A., Dianov G. L., Friedberg E. C., Bohr V. A. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4306–4311. doi: 10.1073/pnas.94.9.4306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bootsma D., Hoeijmakers J. H. DNA repair. Engagement with transcription. Nature. 1993 May 13;363(6425):114–115. doi: 10.1038/363114a0. [DOI] [PubMed] [Google Scholar]
  4. Brumback R. A., Yoder F. W., Andrews A. D., Peck G. L., Robbins J. H. Normal pressure hydrocephalus. Recognition and relationship to neurological abnormalities in Cockayne's syndrome. Arch Neurol. 1978 Jun;35(6):337–345. doi: 10.1001/archneur.1978.00500300011002. [DOI] [PubMed] [Google Scholar]
  5. Cairns B. R., Lorch Y., Li Y., Zhang M., Lacomis L., Erdjument-Bromage H., Tempst P., Du J., Laurent B., Kornberg R. D. RSC, an essential, abundant chromatin-remodeling complex. Cell. 1996 Dec 27;87(7):1249–1260. doi: 10.1016/s0092-8674(00)81820-6. [DOI] [PubMed] [Google Scholar]
  6. Cooper P. K., Nouspikel T., Clarkson S. G., Leadon S. A. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997 Feb 14;275(5302):990–993. doi: 10.1126/science.275.5302.990. [DOI] [PubMed] [Google Scholar]
  7. Friedberg E. C. Cockayne syndrome--a primary defect in DNA repair, transcription, both or neither? Bioessays. 1996 Sep;18(9):731–738. doi: 10.1002/bies.950180908. [DOI] [PubMed] [Google Scholar]
  8. Gibbons R. J., Picketts D. J., Villard L., Higgs D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell. 1995 Mar 24;80(6):837–845. doi: 10.1016/0092-8674(95)90287-2. [DOI] [PubMed] [Google Scholar]
  9. Henning K. A., Li L., Iyer N., McDaniel L. D., Reagan M. S., Legerski R., Schultz R. A., Stefanini M., Lehmann A. R., Mayne L. V. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell. 1995 Aug 25;82(4):555–564. doi: 10.1016/0092-8674(95)90028-4. [DOI] [PubMed] [Google Scholar]
  10. Hoeijmakers J. H., Egly J. M., Vermeulen W. TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev. 1996 Feb;6(1):26–33. doi: 10.1016/s0959-437x(96)90006-4. [DOI] [PubMed] [Google Scholar]
  11. Hoeijmakers J. H. Nucleotide excision repair. II: From yeast to mammals. Trends Genet. 1993 Jun;9(6):211–217. doi: 10.1016/0168-9525(93)90121-w. [DOI] [PubMed] [Google Scholar]
  12. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  13. Lehmann A. R., Bootsma D., Clarkson S. G., Cleaver J. E., McAlpine P. J., Tanaka K., Thompson L. H., Wood R. D. Nomenclature of human DNA repair genes. Mutat Res. 1994 Jul;315(1):41–42. doi: 10.1016/0921-8777(94)90026-4. [DOI] [PubMed] [Google Scholar]
  14. Lehmann A. R. Nucleotide excision repair and the link with transcription. Trends Biochem Sci. 1995 Oct;20(10):402–405. doi: 10.1016/s0968-0004(00)89088-x. [DOI] [PubMed] [Google Scholar]
  15. Lehmann A. R., Thompson A. F., Harcourt S. A., Stefanini M., Norris P. G. Cockayne's syndrome: correlation of clinical features with cellular sensitivity of RNA synthesis to UV irradiation. J Med Genet. 1993 Aug;30(8):679–682. doi: 10.1136/jmg.30.8.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lehmann A. R. Three complementation groups in Cockayne syndrome. Mutat Res. 1982 Dec;106(2):347–356. doi: 10.1016/0027-5107(82)90115-4. [DOI] [PubMed] [Google Scholar]
  17. Lowry R. B. Early onset of Cockayne syndrome. Am J Med Genet. 1982 Oct;13(2):209–210. doi: 10.1002/ajmg.1320130211. [DOI] [PubMed] [Google Scholar]
  18. Mayne L. V., Lehmann A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 1982 Apr;42(4):1473–1478. [PubMed] [Google Scholar]
  19. Nance M. A., Berry S. A. Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992 Jan 1;42(1):68–84. doi: 10.1002/ajmg.1320420115. [DOI] [PubMed] [Google Scholar]
  20. Pazin M. J., Kadonaga J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell. 1997 Mar 21;88(6):737–740. doi: 10.1016/s0092-8674(00)81918-2. [DOI] [PubMed] [Google Scholar]
  21. Peterson C. L., Tamkun J. W. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci. 1995 Apr;20(4):143–146. doi: 10.1016/s0968-0004(00)88990-2. [DOI] [PubMed] [Google Scholar]
  22. Picketts D. J., Higgs D. R., Bachoo S., Blake D. J., Quarrell O. W., Gibbons R. J. ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum Mol Genet. 1996 Dec;5(12):1899–1907. doi: 10.1093/hmg/5.12.1899. [DOI] [PubMed] [Google Scholar]
  23. Selby C. P., Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993 Apr 2;260(5104):53–58. doi: 10.1126/science.8465200. [DOI] [PubMed] [Google Scholar]
  24. Stefanini M., Fawcett H., Botta E., Nardo T., Lehmann A. R. Genetic analysis of twenty-two patients with Cockayne syndrome. Hum Genet. 1996 Apr;97(4):418–423. doi: 10.1007/BF02267059. [DOI] [PubMed] [Google Scholar]
  25. Steingrimsdottir H., Rowley G., Waugh A., Beare D., Ceccherini I., Cole J., Lehmann A. R. Molecular analysis of mutations in the hprt gene in circulating lymphocytes from normal and DNA-repair-deficient donors. Mutat Res. 1993 Jun;294(1):29–41. doi: 10.1016/0921-8777(93)90055-l. [DOI] [PubMed] [Google Scholar]
  26. Sugita K., Takanashi J., Suzuki N., Niimi H. Comparison of cellular sensitivity to UV killing with neuropsychological impairment in Cockayne syndrome patients. Brain Dev. 1991 May;13(3):163–166. doi: 10.1016/s0387-7604(12)80023-4. [DOI] [PubMed] [Google Scholar]
  27. Tanaka K., Kawai K., Kumahara Y., Ikenaga M., Okada Y. Genetic complementation groups in cockayne syndrome. Somatic Cell Genet. 1981 Jul;7(4):445–455. doi: 10.1007/BF01542989. [DOI] [PubMed] [Google Scholar]
  28. Troelstra C., Odijk H., de Wit J., Westerveld A., Thompson L. H., Bootsma D., Hoeijmakers J. H. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol. 1990 Nov;10(11):5806–5813. doi: 10.1128/mcb.10.11.5806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Troelstra C., van Gool A., de Wit J., Vermeulen W., Bootsma D., Hoeijmakers J. H. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell. 1992 Dec 11;71(6):939–953. doi: 10.1016/0092-8674(92)90390-x. [DOI] [PubMed] [Google Scholar]
  30. Wade M. H., Chu E. H. Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome. Mutat Res. 1979 Jan;59(1):49–60. doi: 10.1016/0027-5107(79)90194-5. [DOI] [PubMed] [Google Scholar]
  31. van Gool A. J., Citterio E., Rademakers S., van Os R., Vermeulen W., Constantinou A., Egly J. M., Bootsma D., Hoeijmakers J. H. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 1997 Oct 1;16(19):5955–5965. doi: 10.1093/emboj/16.19.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Gool A. J., Verhage R., Swagemakers S. M., van de Putte P., Brouwer J., Troelstra C., Bootsma D., Hoeijmakers J. H. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994 Nov 15;13(22):5361–5369. doi: 10.1002/j.1460-2075.1994.tb06871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Gool A. J., van der Horst G. T., Citterio E., Hoeijmakers J. H. Cockayne syndrome: defective repair of transcription? EMBO J. 1997 Jul 16;16(14):4155–4162. doi: 10.1093/emboj/16.14.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Hoffen A., Natarajan A. T., Mayne L. V., van Zeeland A. A., Mullenders L. H., Venema J. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic Acids Res. 1993 Dec 25;21(25):5890–5895. doi: 10.1093/nar/21.25.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Oosterwijk M. F., Versteeg A., Filon R., van Zeeland A. A., Mullenders L. H. The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes. Mol Cell Biol. 1996 Aug;16(8):4436–4444. doi: 10.1128/mcb.16.8.4436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van der Horst G. T., van Steeg H., Berg R. J., van Gool A. J., de Wit J., Weeda G., Morreau H., Beems R. B., van Kreijl C. F., de Gruijl F. R. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell. 1997 May 2;89(3):425–435. doi: 10.1016/s0092-8674(00)80223-8. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES