Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Feb;62(2):311–319. doi: 10.1086/301713

Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum.

M D Briggs 1, G R Mortier 1, W G Cole 1, L M King 1, S S Golik 1, J Bonaventure 1, L Nuytinck 1, A De Paepe 1, J G Leroy 1, L Biesecker 1, M Lipson 1, W R Wilcox 1, R S Lachman 1, D L Rimoin 1, R G Knowlton 1, D H Cohn 1
PMCID: PMC1376889  PMID: 9463320

Abstract

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are autosomal dominant osteochondrodysplasias that result in mild to severe short-limb dwarfism and early-onset osteoarthrosis. PSACH and some forms of MED result from mutations in the gene for cartilage oligomeric matrix protein (COMP; OMIM 600310 [http://www3.ncbi.nlm. nih.gov:80/htbin-post/Omim/dispmim?600310]). We report the identification of COMP mutations in an additional 14 families with PSACH or MED phenotypes. Mutations predicted to result in single-amino acid deletions or substitutions, all in the region of the COMP gene encoding the calmodulin-like repeat elements, were identified in patients with moderate to severe PSACH. We also identified within this domain a missense mutation that produced MED Fairbank. In two families, one with mild PSACH and the second with a form of MED, we identified different substitutions for a residue in the carboxyl-terminal globular region of COMP. Both the clinical presentations of these two families and the identification of COMP-gene mutations provide evidence of phenotypic overlap between PSACH and MED. These data also reveal a role for the carboxyl-terminal domain in the structure and/or function of COMP.

Full Text

The Full Text of this article is available as a PDF (684.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. T., Jr, Warren S. T. Trinucleotide repeat expansion and human disease. Annu Rev Genet. 1995;29:703–728. doi: 10.1146/annurev.ge.29.120195.003415. [DOI] [PubMed] [Google Scholar]
  2. Ballo R., Briggs M. D., Cohn D. H., Knowlton R. G., Beighton P. H., Ramesar R. S. Multiple epiphyseal dysplasia, ribbing type: a novel point mutation in the COMP gene in a South African family. Am J Med Genet. 1997 Feb 11;68(4):396–400. [PubMed] [Google Scholar]
  3. Briggs M. D., Choi H., Warman M. L., Loughlin J. A., Wordsworth P., Sykes B. C., Irven C. M., Smith M., Wynne-Davies R., Lipson M. H. Genetic mapping of a locus for multiple epiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene. Am J Hum Genet. 1994 Oct;55(4):678–684. [PMC free article] [PubMed] [Google Scholar]
  4. Briggs M. D., Hoffman S. M., King L. M., Olsen A. S., Mohrenweiser H., Leroy J. G., Mortier G. R., Rimoin D. L., Lachman R. S., Gaines E. S. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995 Jul;10(3):330–336. doi: 10.1038/ng0795-330. [DOI] [PubMed] [Google Scholar]
  5. Briggs M. D., Rasmussen I. M., Weber J. L., Yuen J., Reinker K., Garber A. P., Rimoin D. L., Cohn D. H. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19. Genomics. 1993 Dec;18(3):656–660. doi: 10.1016/s0888-7543(05)80369-6. [DOI] [PubMed] [Google Scholar]
  6. Cohn D. H., Briggs M. D., King L. M., Rimoin D. L., Wilcox W. R., Lachman R. S., Knowlton R. G. Mutations in the cartilage oligomeric matrix protein (COMP) gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Ann N Y Acad Sci. 1996 Jun 8;785:188–194. doi: 10.1111/j.1749-6632.1996.tb56258.x. [DOI] [PubMed] [Google Scholar]
  7. Deere M., Blanton S. H., Scott C. I., Langer L. O., Pauli R. M., Hecht J. T. Genetic heterogeneity in multiple epiphyseal dysplasia. Am J Hum Genet. 1995 Mar;56(3):698–704. [PMC free article] [PubMed] [Google Scholar]
  8. DiCesare P. E., Mörgelin M., Mann K., Paulsson M. Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem. 1994 Aug 1;223(3):927–937. doi: 10.1111/j.1432-1033.1994.tb19070.x. [DOI] [PubMed] [Google Scholar]
  9. Gao A. G., Frazier W. A. Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins. J Biol Chem. 1994 Nov 25;269(47):29650–29657. [PubMed] [Google Scholar]
  10. Gao A. G., Lindberg F. P., Finn M. B., Blystone S. D., Brown E. J., Frazier W. A. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem. 1996 Jan 5;271(1):21–24. doi: 10.1074/jbc.271.1.21. [DOI] [PubMed] [Google Scholar]
  11. Hecht J. T., Francomano C. A., Briggs M. D., Deere M., Conner B., Horton W. A., Warman M., Cohn D. H., Blanton S. H. Linkage of typical pseudoachondroplasia to chromosome 19. Genomics. 1993 Dec;18(3):661–666. doi: 10.1016/s0888-7543(05)80370-2. [DOI] [PubMed] [Google Scholar]
  12. Hecht J. T., Nelson L. D., Crowder E., Wang Y., Elder F. F., Harrison W. R., Francomano C. A., Prange C. K., Lennon G. G., Deere M. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet. 1995 Jul;10(3):325–329. doi: 10.1038/ng0795-325. [DOI] [PubMed] [Google Scholar]
  13. Hedbom E., Antonsson P., Hjerpe A., Aeschlimann D., Paulsson M., Rosa-Pimentel E., Sommarin Y., Wendel M., Oldberg A., Heinegård D. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992 Mar 25;267(9):6132–6136. [PubMed] [Google Scholar]
  14. Kink J. A., Maley M. E., Preston R. R., Ling K. Y., Wallen-Friedman M. A., Saimi Y., Kung C. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell. 1990 Jul 13;62(1):165–174. doi: 10.1016/0092-8674(90)90250-i. [DOI] [PubMed] [Google Scholar]
  15. Kunkel T. A. Nucleotide repeats. Slippery DNA and diseases. Nature. 1993 Sep 16;365(6443):207–208. doi: 10.1038/365207a0. [DOI] [PubMed] [Google Scholar]
  16. Maroteaux P., Stanescu R., Stanescu V., Fontaine G. The mild form of pseudoachondroplasia. Identity of the morphological and biochemical alterations of growth cartilage with those of typical pseudoachondroplasia. Eur J Pediatr. 1980 May;133(3):227–231. doi: 10.1007/BF00496081. [DOI] [PubMed] [Google Scholar]
  17. Maynard J. A., Cooper R. R., Ponseti I. V. A unique rough surfaced endoplasmic reticulum inclusion in pseudoachondroplasia. Lab Invest. 1972 Jan;26(1):40–44. [PubMed] [Google Scholar]
  18. Muragaki Y., Mariman E. C., van Beersum S. E., Perälä M., van Mourik J. B., Warman M. L., Olsen B. R., Hamel B. C. A mutation in the gene encoding the alpha 2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat Genet. 1996 Jan;12(1):103–105. doi: 10.1038/ng0196-103. [DOI] [PubMed] [Google Scholar]
  19. Newton G., Weremowicz S., Morton C. C., Copeland N. G., Gilbert D. J., Jenkins N. A., Lawler J. Characterization of human and mouse cartilage oligomeric matrix protein. Genomics. 1994 Dec;24(3):435–439. doi: 10.1006/geno.1994.1649. [DOI] [PubMed] [Google Scholar]
  20. Oehlmann R., Summerville G. P., Yeh G., Weaver E. J., Jimenez S. A., Knowlton R. G. Genetic linkage mapping of multiple epiphyseal dysplasia to the pericentromeric region of chromosome 19. Am J Hum Genet. 1994 Jan;54(1):3–10. [PMC free article] [PubMed] [Google Scholar]
  21. Oldberg A., Antonsson P., Lindblom K., Heinegård D. COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem. 1992 Nov 5;267(31):22346–22350. [PubMed] [Google Scholar]
  22. Rimoin D. L., Rasmussen I. M., Briggs M. D., Roughley P. J., Gruber H. E., Warman M. L., Olsen B. R., Hsia Y. E., Yuen J., Reinker K. A large family with features of pseudoachondroplasia and multiple epiphyseal dysplasia: exclusion of seven candidate gene loci that encode proteins of the cartilage extracellular matrix. Hum Genet. 1994 Mar;93(3):236–242. doi: 10.1007/BF00212015. [DOI] [PubMed] [Google Scholar]
  23. Stanescu R., Stanescu V., Muriel M. P., Maroteaux P. Multiple epiphyseal dysplasia, Fairbank type: morphologic and biochemical study of cartilage. Am J Med Genet. 1993 Feb 15;45(4):501–507. doi: 10.1002/ajmg.1320450420. [DOI] [PubMed] [Google Scholar]
  24. Stanescu V., Maroteaux P., Stanescu R. The biochemical defect of pseudoachondroplasia. Eur J Pediatr. 1982 May;138(3):221–225. doi: 10.1007/BF00441206. [DOI] [PubMed] [Google Scholar]
  25. Takigawa M., Tajima K., Pan H. O., Enomoto M., Kinoshita A., Suzuki F., Takano Y., Mori Y. Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes. Cancer Res. 1989 Jul 15;49(14):3996–4002. [PubMed] [Google Scholar]
  26. Tsao P. W., Mousa S. A. Thrombospondin mediates calcium mobilization in fibroblasts via its Arg-Gly-Asp and carboxyl-terminal domains. J Biol Chem. 1995 Oct 6;270(40):23747–23753. doi: 10.1074/jbc.270.40.23747. [DOI] [PubMed] [Google Scholar]
  27. Tuckwell D. S., Ayad S., Grant M. E., Takigawa M., Humphries M. J. Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge. J Cell Sci. 1994 Apr;107(Pt 4):993–1005. doi: 10.1242/jcs.107.4.993. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES