Abstract
We recently reported three truncating mutations of the cytochrome P4501B1 gene (CYP1B1) in five families with primary congenital glaucoma (PCG) linked to the GLC3A locus on chromosome 2p21. This could be the first direct evidence supporting the hypothesis that members of the cytochrome P450 superfamily may control the processes of growth and differentiation. We present a comprehensive sequence analysis of the translated regions of the CYP1B1 gene in 22 PCG families and 100 randomly selected normal individuals. Sixteen mutations and six polymorphisms were identified, illustrating an extensive allelic heterogeneity. The positions affected by these changes were evaluated by building a three-dimensional homology model of the conserved C-terminal half of CYP1B1. These mutations may interfere with heme incorporation, by affecting the hinge region and/or the conserved core structures (CCS) that determine the proper folding and heme-binding ability of P450 molecules. In contrast, all polymorphic sites were poorly conserved and located outside the CCS. Northern hybridization analysis showed strong expression of CYP1B1 in the anterior uveal tract, which is involved in secretion of the aqueous humor and in regulation of outflow facility, processes that could contribute to the elevated intraocular pressure characteristic of PCG.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN L., BURIAN H. M., BRALEY A. E. A new concept of the development of the anterior chamber angle; its relationship to developmental glaucoma and other structural anomalies. AMA Arch Ophthalmol. 1955 Jun;53(6):783–798. doi: 10.1001/archopht.1955.00930010791002. [DOI] [PubMed] [Google Scholar]
- Akarsu A. N., Turacli M. E., Aktan S. G., Barsoum-Homsy M., Chevrette L., Sayli B. S., Sarfarazi M. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996 Aug;5(8):1199–1203. doi: 10.1093/hmg/5.8.1199. [DOI] [PubMed] [Google Scholar]
- Anderson D. R. The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. Trans Am Ophthalmol Soc. 1981;79:458–485. [PMC free article] [PubMed] [Google Scholar]
- BARKAN O. Pathogenesis of congenital glaucoma: gonioscopic and anatomic observation of the angle of the anterior chamber in the normal eye and in congenital glaucoma. Am J Ophthalmol. 1955 Jul;40(1):1–11. [PubMed] [Google Scholar]
- Barsoum-Homsy M., Chevrette L. Incidence and prognosis of childhood glaucoma. A study of 63 cases. Ophthalmology. 1986 Oct;93(10):1323–1327. doi: 10.1016/s0161-6420(86)33569-3. [DOI] [PubMed] [Google Scholar]
- Baserga S. J., Benz E. J., Jr Nonsense mutations in the human beta-globin gene affect mRNA metabolism. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2056–2060. doi: 10.1073/pnas.85.7.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. D., Kemper B. Different structural requirements at specific proline residue positions in the conserved proline-rich region of cytochrome P450 2C2. J Biol Chem. 1996 Nov 8;271(45):28607–28611. doi: 10.1074/jbc.271.45.28607. [DOI] [PubMed] [Google Scholar]
- François J. Congenital glaucoma and its inheritance. Ophthalmologica. 1980;181(2):61–73. doi: 10.1159/000309028. [DOI] [PubMed] [Google Scholar]
- Genĉk A. Epidemiology and genetics of primary congenital glaucoma in Slovakia. Description of a form of primary congenital glaucoma in gypsies with autosomal-recessive inheritance and complete penetrance. Dev Ophthalmol. 1989;16:76–115. [PubMed] [Google Scholar]
- Graham-Lorence S. E., Peterson J. A. Structural alignments of P450s and extrapolations to the unknown. Methods Enzymol. 1996;272:315–326. doi: 10.1016/s0076-6879(96)72037-2. [DOI] [PubMed] [Google Scholar]
- Hasemann C. A., Ravichandran K. G., Peterson J. A., Deisenhofer J. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol. 1994 Mar 4;236(4):1169–1185. doi: 10.1016/0022-2836(94)90019-1. [DOI] [PubMed] [Google Scholar]
- Hayes C. L., Spink D. C., Spink B. C., Cao J. Q., Walker N. J., Sutter T. R. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9776–9781. doi: 10.1073/pnas.93.18.9776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoskins H. D., Jr, Shaffer R. N., Hetherington J. Anatomical classification of the developmental glaucomas. Arch Ophthalmol. 1984 Sep;102(9):1331–1336. doi: 10.1001/archopht.1984.01040031081030. [DOI] [PubMed] [Google Scholar]
- Kupfer C., Kaiser-Kupfer M. I. Observations on the development of the anterior chamber angle with reference to the pathogenesis of congenital glaucomas. Am J Ophthalmol. 1979 Sep;88(3 Pt 1):424–426. doi: 10.1016/0002-9394(79)90643-3. [DOI] [PubMed] [Google Scholar]
- MAUMENEE A. E. The pathogenesis of congenital glaucoma: a new theory. Trans Am Ophthalmol Soc. 1958;56:507–570. [PMC free article] [PubMed] [Google Scholar]
- Martin-Vasallo P., Ghosh S., Coca-Prados M. Expression of Na,K-ATPase alpha subunit isoforms in the human ciliary body and cultured ciliary epithelial cells. J Cell Physiol. 1989 Nov;141(2):243–252. doi: 10.1002/jcp.1041410203. [DOI] [PubMed] [Google Scholar]
- Murray G. I., Taylor M. C., McFadyen M. C., McKay J. A., Greenlee W. F., Burke M. D., Melvin W. T. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 1997 Jul 15;57(14):3026–3031. [PubMed] [Google Scholar]
- Nebert D. W. Drug metabolism. Growth signal pathways. Nature. 1990 Oct 25;347(6295):709–710. doi: 10.1038/347709a0. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
- Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
- Plásilová M., Feráková E., Kádasi L., Poláková H., Gerinec A., Ott J., Ferák V. Linkage of autosomal recessive primary congenital glaucoma to the GLC3A locus in Roms (Gypsies) from Slovakia. Hum Hered. 1998 Jan-Feb;48(1):30–33. doi: 10.1159/000022778. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987 Jun 5;195(3):687–700. doi: 10.1016/0022-2836(87)90190-2. [DOI] [PubMed] [Google Scholar]
- Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
- Sarfarazi M., Akarsu A. N., Hossain A., Turacli M. E., Aktan S. G., Barsoum-Homsy M., Chevrette L., Sayli B. S. Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995 Nov 20;30(2):171–177. doi: 10.1006/geno.1995.9888. [DOI] [PubMed] [Google Scholar]
- Smith R. F., Smith T. F. Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. Protein Eng. 1992 Jan;5(1):35–41. doi: 10.1093/protein/5.1.35. [DOI] [PubMed] [Google Scholar]
- Stoilov I., Akarsu A. N., Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997 Apr;6(4):641–647. doi: 10.1093/hmg/6.4.641. [DOI] [PubMed] [Google Scholar]
- Sutter T. R., Tang Y. M., Hayes C. L., Wo Y. Y., Jabs E. W., Li X., Yin H., Cody C. W., Greenlee W. F. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem. 1994 May 6;269(18):13092–13099. [PubMed] [Google Scholar]
- Tang Y. M., Wo Y. Y., Stewart J., Hawkins A. L., Griffin C. A., Sutter T. R., Greenlee W. F. Isolation and characterization of the human cytochrome P450 CYP1B1 gene. J Biol Chem. 1996 Nov 8;271(45):28324–28330. doi: 10.1074/jbc.271.45.28324. [DOI] [PubMed] [Google Scholar]
- Turaçli M. E., Aktan S. G., Sayli B. S., Akarsu N. Therapeutical and genetical aspects of congenital glaucomas. Int Ophthalmol. 1992 Sep;16(4-5):359–362. doi: 10.1007/BF00917991. [DOI] [PubMed] [Google Scholar]
- Wo Y. Y., Stewart J., Greenlee W. F. Functional analysis of the promoter for the human CYP1B1 gene. J Biol Chem. 1997 Oct 17;272(42):26702–26707. doi: 10.1074/jbc.272.42.26702. [DOI] [PubMed] [Google Scholar]
- Yamazaki S., Sato K., Suhara K., Sakaguchi M., Mihara K., Omura T. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem. 1993 Nov;114(5):652–657. doi: 10.1093/oxfordjournals.jbchem.a124232. [DOI] [PubMed] [Google Scholar]
- deLuise V. P., Anderson D. R. Primary infantile glaucoma (congenital glaucoma). Surv Ophthalmol. 1983 Jul-Aug;28(1):1–19. doi: 10.1016/0039-6257(83)90174-1. [DOI] [PubMed] [Google Scholar]
