Abstract
Chromosomes from 20 patients were used to delineate the breakpoints of inverted duplications of chromosome 15 (inv dup[15]) that include the Prader-Willi syndrome/Angelman syndrome (PWS/AS) chromosomal region (15q11-q13). YAC and cosmid clones from 15q11-q14 were used for FISH analysis, to detect the presence or absence of material on each inv dup(15). We describe two types of inv dup(15): those that break between D15S12 and D15S24, near the distal boundary of the PWS/AS chromosomal region, and those that share a breakpoint immediately proximal to D15S1010. Among the latter group, no breakpoint heterogeneity could be detected with the available probes, and one YAC (810f11) showed a reduced signal on each inv dup(15), compared with that on normal chromosomes 15. The lack of breakpoint heterogeneity may be the result of a U-type exchange involving particular sequences on either homologous chromosomes or sister chromatids. Parent-of-origin studies revealed that, in all the cases analyzed, the inv dup(15) was maternal in origin.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckmann J. S., Tomfohrde J., Barnes R. I., Williams M., Broux O., Richard I., Weissenbach J., Bowcock A. M. A linkage map of human chromosome 15 with an average resolution of 2 cM and containing 55 polymorphic microsatellites. Hum Mol Genet. 1993 Dec;2(12):2019–2030. doi: 10.1093/hmg/2.12.2019. [DOI] [PubMed] [Google Scholar]
- Buckton K. E., Spowart G., Newton M. S., Evans H. J. Forty four probands with an additional "marker" chromosome. Hum Genet. 1985;69(4):353–370. doi: 10.1007/BF00291656. [DOI] [PubMed] [Google Scholar]
- Buiting K., Greger V., Brownstein B. H., Mohr R. M., Voiculescu I., Winterpacht A., Zabel B., Horsthemke B. A putative gene family in 15q11-13 and 16p11.2: possible implications for Prader-Willi and Angelman syndromes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5457–5461. doi: 10.1073/pnas.89.12.5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callen D. F., Ringenbergs M. L., Fowler J. C., Freemantle C. J., Haan E. A. Small marker chromosomes in man: origin from pericentric heterochromatin of chromosomes 1, 9, and 16. J Med Genet. 1990 Mar;27(3):155–159. doi: 10.1136/jmg.27.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng S. D., Spinner N. B., Zackai E. H., Knoll J. H. Cytogenetic and molecular characterization of inverted duplicated chromosomes 15 from 11 patients. Am J Hum Genet. 1994 Oct;55(4):753–759. [PMC free article] [PubMed] [Google Scholar]
- Christian S. L., Robinson W. P., Huang B., Mutirangura A., Line M. R., Nakao M., Surti U., Chakravarti A., Ledbetter D. H. Molecular characterization of two proximal deletion breakpoint regions in both Prader-Willi and Angelman syndrome patients. Am J Hum Genet. 1995 Jul;57(1):40–48. [PMC free article] [PubMed] [Google Scholar]
- Crolla J. A., Harvey J. F., Sitch F. L., Dennis N. R. Supernumerary marker 15 chromosomes: a clinical, molecular and FISH approach to diagnosis and prognosis. Hum Genet. 1995 Feb;95(2):161–170. doi: 10.1007/BF00209395. [DOI] [PubMed] [Google Scholar]
- Flejter W. L., Bennett-Baker P. E., Ghaziuddin M., McDonald M., Sheldon S., Gorski J. L. Cytogenetic and molecular analysis of inv dup(15) chromosomes observed in two patients with autistic disorder and mental retardation. Am J Med Genet. 1996 Jan 11;61(2):182–187. doi: 10.1002/(SICI)1096-8628(19960111)61:2<182::AID-AJMG17>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Fujita H., Sakamoto Y., Hamamoto Y. An extra idic(15p)(q11) chromosome in Prader-Willi syndrome. Hum Genet. 1980;55(3):409–411. doi: 10.1007/BF00290227. [DOI] [PubMed] [Google Scholar]
- Glenn C. C., Saitoh S., Jong M. T., Filbrandt M. M., Surti U., Driscoll D. J., Nicholls R. D. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996 Feb;58(2):335–346. [PMC free article] [PubMed] [Google Scholar]
- Hall J. G. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet. 1990 May;46(5):857–873. [PMC free article] [PubMed] [Google Scholar]
- Huang B., Crolla J. A., Christian S. L., Wolf-Ledbetter M. E., Macha M. E., Papenhausen P. N., Ledbetter D. H. Refined molecular characterization of the breakpoints in small inv dup(15) chromosomes. Hum Genet. 1997 Jan;99(1):11–17. doi: 10.1007/s004390050301. [DOI] [PubMed] [Google Scholar]
- Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
- Knight L. A., Lipson M., Mann J., Bachman R. Mosaic inversion duplication of chromosome 15 without phenotypic effect: occurrence in a father and daughter. Am J Med Genet. 1984 Mar;17(3):649–654. doi: 10.1002/ajmg.1320170315. [DOI] [PubMed] [Google Scholar]
- Kramer P. L., Luty J. A., Litt M. Regional localization of the gene for cardiac muscle actin (ACTC) on chromosome 15q. Genomics. 1992 Jul;13(3):904–905. doi: 10.1016/0888-7543(92)90185-u. [DOI] [PubMed] [Google Scholar]
- Leana-Cox J., Jenkins L., Palmer C. G., Plattner R., Sheppard L., Flejter W. L., Zackowski J., Tsien F., Schwartz S. Molecular cytogenetic analysis of inv dup(15) chromosomes, using probes specific for the Prader-Willi/Angelman syndrome region: clinical implications. Am J Hum Genet. 1994 May;54(5):748–756. [PMC free article] [PubMed] [Google Scholar]
- Ledbetter D. H., Mascarello J. T., Riccardi V. M., Harper V. D., Airhart S. D., Strobel R. J. Chromosome 15 abnormalities and the Prader-Willi syndrome: a follow-up report of 40 cases. Am J Hum Genet. 1982 Mar;34(2):278–285. [PMC free article] [PubMed] [Google Scholar]
- Maraschio P., Zuffardi O., Bernardi F., Bozzola M., De Paoli C., Fonatsch C., Flatz S. D., Ghersini L., Gimelli G., Loi M. Preferential maternal derivation in inv dup(15): analysis of eight new cases. Hum Genet. 1981;57(4):345–350. doi: 10.1007/BF00281681. [DOI] [PubMed] [Google Scholar]
- Mattei M. G., Souiah N., Mattei J. F. Chromosome 15 anomalies and the Prader-Willi syndrome: cytogenetic analysis. Hum Genet. 1984;66(4):313–334. doi: 10.1007/BF00287636. [DOI] [PubMed] [Google Scholar]
- Mignon C., Malzac P., Moncla A., Depetris D., Roeckel N., Croquette M. F., Mattei M. G. Clinical heterogeneity in 16 patients with inv dup 15 chromosome: cytogenetic and molecular studies, search for an imprinting effect. Eur J Hum Genet. 1996;4(2):88–100. doi: 10.1159/000472176. [DOI] [PubMed] [Google Scholar]
- Mutirangura A., Jayakumar A., Sutcliffe J. S., Nakao M., McKinney M. J., Buiting K., Horsthemke B., Beaudet A. L., Chinault A. C., Ledbetter D. H. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13) and refined localization of the SNRPN gene. Genomics. 1993 Dec;18(3):546–552. doi: 10.1016/s0888-7543(11)80011-x. [DOI] [PubMed] [Google Scholar]
- Nicholls R. D. Genomic imprinting and uniparental disomy in Angelman and Prader-Willi syndromes: a review. Am J Med Genet. 1993 Apr 1;46(1):16–25. doi: 10.1002/ajmg.1320460106. [DOI] [PubMed] [Google Scholar]
- Nicholls R. D., Knoll J. H., Glatt K., Hersh J. H., Brewster T. D., Graham J. M., Jr, Wurster-Hill D., Wharton R., Latt S. A. Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader-Willi syndrome. Am J Med Genet. 1989 May;33(1):66–77. doi: 10.1002/ajmg.1320330109. [DOI] [PubMed] [Google Scholar]
- Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plattner R., Heerema N. A., Howard-Peebles P. N., Miles J. H., Soukup S., Palmer C. G. Clinical findings in patients with marker chromosomes identified by fluorescence in situ hybridization. Hum Genet. 1993 Jul;91(6):589–598. doi: 10.1007/BF00205086. [DOI] [PubMed] [Google Scholar]
- Plattner R., Heerema N. A., Patil S. R., Howard-Peebles P. N., Palmer C. G. Characterization of seven DA/DAPI-positive bisatellited marker chromosomes by in situ hybridization. Hum Genet. 1991 Jul;87(3):290–296. doi: 10.1007/BF00200906. [DOI] [PubMed] [Google Scholar]
- Rauch A., Pfeiffer R. A., Trautmann U., Liehr T., Rott H. D., Ulmer R. A study of ten small supernumerary (marker) chromosomes identified by fluorescence in situ hybridization (FISH). Clin Genet. 1992 Aug;42(2):84–90. doi: 10.1111/j.1399-0004.1992.tb03145.x. [DOI] [PubMed] [Google Scholar]
- Richard I., Broux O., Chiannilkulchai N., Fougerousse F., Allamand V., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Regional localization of human chromosome 15 loci. Genomics. 1994 Oct;23(3):619–627. doi: 10.1006/geno.1994.1550. [DOI] [PubMed] [Google Scholar]
- Robinson W. P., Binkert F., Giné R., Vazquez C., Müller W., Rosenkranz W., Schinzel A. Clinical and molecular analysis of five inv dup(15) patients. Eur J Hum Genet. 1993;1(1):37–50. doi: 10.1159/000472386. [DOI] [PubMed] [Google Scholar]
- Robinson W. P., Wagstaff J., Bernasconi F., Baccichetti C., Artifoni L., Franzoni E., Suslak L., Shih L. Y., Aviv H., Schinzel A. A. Uniparental disomy explains the occurrence of the Angelman or Prader-Willi syndrome in patients with an additional small inv dup(15) chromosome. J Med Genet. 1993 Sep;30(9):756–760. doi: 10.1136/jmg.30.9.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreck R. R., Breg W. R., Erlanger B. F., Miller O. J. Preferential derivation of abnormal human G-group-like chromosomes from chromosome 15. Hum Genet. 1977 Apr 7;36(1):1–12. doi: 10.1007/BF00390430. [DOI] [PubMed] [Google Scholar]
- Shibuya Y., Tonoki H., Kajii N., Niikawa N. Identification of a marker chromosome as inv dup(15) by molecular analysis. Clin Genet. 1991 Sep;40(3):233–236. doi: 10.1111/j.1399-0004.1991.tb03083.x. [DOI] [PubMed] [Google Scholar]
- Speed R. M., Johnston A. W., Evans H. J. Chromosome survey of total population of mentally subnormal in North-East of Scotland. J Med Genet. 1976 Aug;13(4):295–306. doi: 10.1136/jmg.13.4.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spinner N. B., Zackai E., Cheng S. D., Knoll J. H. Supernumerary inv dup(15) in a patient with Angelman syndrome and a deletion of 15q11-q13. Am J Med Genet. 1995 May 22;57(1):61–65. doi: 10.1002/ajmg.1320570114. [DOI] [PubMed] [Google Scholar]
- Stetten G., Sroka-Zaczek B., Corson V. L. Prenatal detection of an accessory chromosome identified as an inversion duplication (15). Hum Genet. 1981;57(4):357–359. doi: 10.1007/BF00281684. [DOI] [PubMed] [Google Scholar]
- Sullivan B. A., Leana-Cox J., Schwartz S. Clarification of subtle reciprocal rearrangements using fluorescence in situ hybridization. Am J Med Genet. 1993 Aug 15;47(2):223–230. doi: 10.1002/ajmg.1320470217. [DOI] [PubMed] [Google Scholar]
- Van Dyke D. L., Weiss L., Logan M., Pai G. S. The origin and behavior of two isodicentric bisatellited chromosomes. Am J Hum Genet. 1977 May;29(3):294–300. [PMC free article] [PubMed] [Google Scholar]
- Wisniewski L. P., Witt M. E., Ginsberg-Fellner F., Wilner J., Desnick R. J. Prader-Willi syndrome and a bisatellited derivative of chromosome 15. Clin Genet. 1980 Jul;18(1):42–47. doi: 10.1111/j.1399-0004.1980.tb01363.x. [DOI] [PubMed] [Google Scholar]
- Wisniewski L., Hassold T., Heffelfinger J., Higgins J. V. Cytogenetic and clinical studies in five cases of inv dup(15). Hum Genet. 1979 Sep;50(3):259–270. doi: 10.1007/BF00399391. [DOI] [PubMed] [Google Scholar]
- Zannotti M., Preto A., Giovanardi P. R., Dallapiccola B. Extra dicentric 15 pter leads to q21/22 chromosomes in five unrelated patients with a distinct syndrome of progressive psychomotor retardation, seizures, hyper-reactivity and dermatoglyphic abnormalities. J Ment Defic Res. 1980 Dec;24(Pt 4):235–242. doi: 10.1111/j.1365-2788.1980.tb00077.x. [DOI] [PubMed] [Google Scholar]